The objective of this study was to determine the circadian variation in methane (CH4) emissions from cattle fed lucerne silage at different feeding levels and feeding frequencies, to assist with interpretation of short ‘snapshot’ CH4 measurements used for predicting daily emissions. Eight Hereford × Friesian heifers (initially 20 months of age) were used in five consecutive periods (P1–5) of 14 days with CH4 emissions measured using respiration chambers for two consecutive days at the end of each period. Feed was restricted to intakes of ~6, 8, 8, 8 and 11 ± 1.3 (ad libitum) kg lucerne silage dry matter (DM), fed in 2, 2, 3, 4 or ad libitum (refilled twice daily) meals per day in P1–5, respectively. Daily CH4 production (g/day) was lower in P1 than in P2–4 (P < 0.05), which were lower than in P5 (P < 0.05), but CH4 yield (24.3 ± 1.23 g/kg DM) was unaffected by treatment. Among the five periods, CH4 emission rate (g/h) before feeding ranged from 1.8 to 6.5 g/h, time to peak CH4 production after start of feeding ranged from 19 to 40 min and peak CH4 production rate ranged from 11.1 to 17.5 g/h. The range in hourly CH4 emission rates during the day decreased with increasing feed intake level, but was unaffected by feeding frequency. In summary, the circadian pattern of CH4 emissions was affected by feed allowance and feeding frequency, and variation in CH4 emission rate was reduced with increasing intake, without affecting average daily yield (g CH4/kg DM intake).
The objective of this study was to develop emission factors (EF) for methane (CH 4 ) emissions from enteric fermentation in cattle native to Benin. Information on livestock characteristics and diet practices specific to the Benin cattle population were gathered from a variety of sources and used to estimate EF according to Tier 2 methodology of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. Most cattle from Benin are Bos taurus represented by Borgou, Somba and Lagune breeds. They are mainly multi-purpose, being used for production of meat, milk, hides and draft power and grazed in open pastures and crop lands comprising tropical forages and crops. Estimated enteric CH 4 EFs varied among cattle breeds and subcategory owing to differences in proportions of gross energy intake expended to meet maintenance, production and activity. EFs ranged from 15.0 to 43.6, 16.9 to 46.3 and 24.7 to 64.9 kg CH 4 /head per year for subcategories of Lagune, Somba and Borgou cattle, respectively. Average EFs for cattle breeds were 24.8, 29.5 and 40.2 kg CH 4 /head per year for Lagune, Somba and Borgou cattle, respectively. The national EF for cattle from Benin was 39.5 kg CH 4 /head per year. This estimated EF was 27.4% higher than the default EF suggested by IPCC for African cattle with the exception of dairy cattle. The outcome of the study underscores the importance of obtaining country-specific EF to estimate global enteric CH 4 emissions.
The objective of this study was to determine methane (CH) and carbon dioxide (CO) emissions from 8 beef heifers (approximately 20 mo of age and 382 ± 24.3 kg BW) measured by respiration chambers and the sulfur hexafluoride (SF) tracer technique and a mobile head-chamber, spot-sampling system (GreenFeed; C-Lock Inc., Rapid City, SD) when fed alfalfa silage at 3 feeding levels and 4 feeding frequencies. Feeding frequency may affect CH yield (g/kg DMI), and measurement systems (such as GreenFeed or SF) are needed to obtain accurate estimates of CH emissions from individual cattle under grazing where new pasture is provided once or twice daily. The Hereford × Friesian heifers were used in 5 consecutive periods (P1 to P5) of 14 d with CH and CO emissions measured with the SF technique in wk 1 (5-6 d), with chambers in wk 2 (2 d), and with the GreenFeed system when not in chambers (8 d) of each period. Alfalfa silage was restricted to 6, 8, 8, and 8 kg DM/d in P1, P2, P3, and P4, respectively, and provided ad libitum (10.9-12.2 kg DM/d) in P5. Silage was fed in 2, 2, 3, and 4 meals per day in P1, P2, P3, and P4, respectively, and was continuously available (refilled twice daily) in P5. Methane production increased from 141 to 265 g/d as DMI doubled ( < 0.001), but average CH yields measured in respiration chambers (24.5 g/kg DMI) and by the SF technique (22.8 g CH/kg DMI) and the GreenFeed system (26.2 g/kg DMI) were unaffected by feeding management ( = 0.6 for chambers and SF and = 0.06 for GreenFeed). The CH yields estimated by the GreenFeed system did not differ from CH yields estimated by the chambers in P1, P2, P3, and P5 but were greater ( < 0.02) than CH yields estimated by the SF technique in P2, P3, P4, and P5. Yields of CO (g/kg DMI) decreased with increasing DMI ( < 0.04) and CO production (g/d) increased from 5,293 to 9,167 g/d as DMI increased ( < 0.001). In general, the SF technique and the GreenFeed system provided means for CH yield that were not different from those of respiration chambers, and CH yields (g/kg DMI) were unaffected by DMI level or feeding frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.