Several recent studies have identified emerging and near-commercial process and technological options to transition heavy industry to global net-zero greenhouse gas (GHG) emissions by mid-century, as required by the Paris Agreement. To reduce industrial emissions with sufficient speed to meet the Paris goals, this review article argues for the rapid formation of regional and sectoral transition plans, implemented through comprehensive policy packages. These policy packages, which will differ by country, sector, and level of development, must reflect regional capacities, politics, resources, and other key circumstances, and be informed and accepted by the stakeholders who must implement the transition. These packages will likely include a mix of the following mutually reinforcing strategies: reducing and substituting the demand for GHG intense materials (i.e., material efficiency) while raising the quantity and quality of recycling through intentional design and regulation; removal of energy subsidies combined with carbon pricing with competitiveness protection; research and development support for decarbonized production technologies followed by lead markets and subsidized prices during early stage commercialization; sunset policies for older high carbon facilities; electricity, hydrogen and carbon capture, and storage infrastructure planning and support; and finally, supporting institutions, including for a "just workforce & community transition" and monitoring and adjustment of policy effectiveness. Given the paucity of industrial decarbonization perspectives available for in-transition and lessdeveloped countries, the review finishes with a discussion of priorities and responsibilities for developed, in-transition and less developed countries.
Cement and steel are essential ingredients of buildings, cars, dams, bridges and skyscrapers. But these industries are among the dirtiest on the planet. Production of cement creates 2.3 billion tonnes of carbon dioxide per year, and making iron and steel releases some 2.6 billion tonnes -or 6.5% and 7.0% of global CO 2 emissions, respectively 1 .
This synthesis paper presents the objectives, approach and cross-cutting results of the Latin American Deep Decarbonization Pathways project (DDP-LAC). It synthesizes and compares detailed national and sectoral deep decarbonization pathways (DDPs) to 2050 compatible with the Paris Agreement objectives and domestic development priorities in Argentina, Colombia, Costa Rica, Ecuador, Mexico and Peru. The first five countries analysed in detail the energy system and agriculture, forestry and land use (AFOLU) at a high level, while Peru focussed on a detailed analysis of AFOLU given its predominance in its GHG emissions. While economy-wide results were produced, this paper focuses on the electricity, passenger transport, and AFOLU results because of their current emissions, potential to grow, and identification of successful strategies for decarbonization (e.g. switching to clean electricity and other net-zero emissions fuels across the economy; urban planning, mode shifting, and electrification in passenger transport; and intensive sustainable agriculture, assignment of land use rights and their enforcement and afforestation in AFOLU). It also highlights where significant emissions remain in 2050, notably in industry, AFOLU, freight, and oil and gas production, all areas for future research. It derives insights for the design of domestic policy packages and identifies priorities for international cooperation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.