Abstract-Simulation and experimental results from 3-D vector flow estimations for a 62+62 2-D row-column (RC) array with integrated apodization are presented. A method for implementing a 3-D transverse oscillation (TO) velocity estimator on a 3.0 MHz RC array is developed and validated. First, a parametric simulation study is conducted where flow direction, ensemble length, number of pulse cycles, steering angles, transmit/receive apodization, and TO apodization profiles and spacing are varied, to find the optimal parameter configuration. The performance of the estimator is evaluated with respect to relative mean biasB and mean standard deviationσ. Second, the optimal parameter configuration is implemented on the prototype RC probe connected to the experimental ultrasound scanner SARUS. Results from measurements conducted in a flow-rig system containing a constant laminar flow and a straight-vessel phantom with a pulsating flow are presented. Both an M-mode and a steered transmit sequence are applied. Three-dimensional vector flow is estimated in the flow-rig for four representative flow directions. In the setup with 90• beam-to-flow angle, the relative mean bias across the entire velocity profile is (-4.7, -0.9, 0.4)% with a relative standard deviation of (8.7, 5.1, 0.8)% for (vx, vy, vz). The estimated peak velocity is 48.5 cm/s ± 3.0 cm/s giving a -3% bias. The out-of-plane velocity component perpendicular to the cross section is used to estimate volumetric flow rates in the flow-rig at a 90• beam-to-flow angle. The estimated mean flow rate in this setup is 91.2 L/h ± 3.1 L/h corresponding to a bias of -11.1%. In a pulsating flow setup, flow rate measured during five cycles is 2.3 mL/stroke ± 0.1 mL/stroke giving a negative 9.7% bias. It is concluded that accurate 3-D vector flow estimation can be obtained using a 2-D RC addressed array.
Abstract-Constructing a double-curved row-columnaddressed (RCA) 2-D array or applying a diverging lens over the flat RCA 2-D array can extend the imaging field-of-view (FOV) to a curvilinear volume without increasing the aperture size, which is necessary for applications such as abdominal and cardiac imaging. Extended FOV and low channel count of double-curved RCA 2-D arrays make 3-D imaging possible with equipment in the price range of conventional 2-D imaging. This study proposes a delay-and-sum beamformation scheme specific to double-curved RCA 2-D arrays and validates its focusing ability based on simulations. A synthetic aperture imaging sequence with single element transmissions is designed for imaging down to 14 cm at a volume rate of 88 Hz. Using a diverging lens with f-number of -1 circumscribing the underlying RCA array, the imaging quality of a double-curved λ/2-pitch 3 MHz 62+62 RCA 2-D array is investigated as a function of depth within a curvilinear FOV of 60°×60°. The simulated double-curved 2-D array exhibits the same full-width-at-halfmaximum values for a point scatterer within its curvilinear FOV at a fixed radial distance compared with a flat 2-D array within its rectilinear FOV. The results of this study demonstrate that the proposed beamforming approach is accurate for achieving correct time-of-flight calculations, and hence avoids geometrical distortions.
A 3-D super resolution (SR) pipeline based on data from a Row-Column (RC) array is presented. The 3 MHz RC array contains 62 rows and 62 columns with a half wavelength pitch. A Synthetic Aperture (SA) pulse inversion sequence with 32 positive and 32 negative row emissions are used for acquiring volumetric data using the SARUS research ultrasound scanner. Data received on the 62 columns are beamformed on a GPU for a maximum volume rate of 156 Hz, when the pulse repetition frequency is 10 kHz. Simulated and 3-D printed point and flow micro-phantoms are used for investigating the approach. The flow micro-phantom contains a 100 µm radius tube injected with the contrast agent SonoVue. The 3-D processing pipeline uses the volumetric envelope data to find the bubble's positions from their interpolated maximum signal and yields a high resolution in all three coordinates. For the point micro-phantom the standard deviation on the position is (20.7, 19.8 , 9.1) µm (x, y, z). The precision estimated for the flow phantom is below 23 µm in all three coordinates, making it possible to locate structures on the order of a capillary in all three dimensions. The RC imaging sequence's point spread function has a size of 0.58 × 1.05 × 0.31 mm 3 (1.17λ ×2.12λ ×0.63λ), so the possible volume resolution is 28,900 times smaller than for SA RC B-mode imaging.
This paper presents the characterization of two prototyped fully integrated 62+62 row-column-addressed (RCA) 2-D transducer array probes, which are based on capacitive micromachined ultrasonic transducer (CMUT) and on piezoelectric transducer (PZT) technology, respectively. Both transducers have integrated apodization to reduce ghost echoes and were designed with similar acoustical features i.e. 3 MHz center frequency, λ /2-pitch and 24.8 × 24.8 mm 2 active footprint. The transducer arrays were assembled in a 3-D printed probe handle with electromagnetic shield and integrated electronics for driving the 128-channel coaxial cable to the scanner. The electronics were designed to allow all elements, both rows and columns, to be used interchangeably as either transmitters or receivers. The transducer characterization i.e. bandwidth, phase delay, surface pressure, sensitivity, insertion loss, and acoustical crosstalk, were based on several single element measurements, including pressure and pulse-echo, and were evaluated quantitatively and comparatively. The weighted center frequency was 3.0 MHz for both probes and the measured −6 dB fractional bandwidth was 109 ± 4% and 80 ± 3% for the CMUT and the PZT probe, respectively. The surface pressures of the CMUT and PZT were 0.55 ± 0.06 MPa and 1.68 ± 0.09 MPa, respectively, and the receive sensitivities of the rows (receiving elements) were 12.9 ± 0.7 µV/Pa and 13.7 ± 2.1 µV/Pa.
A double-curved diverging lens over the flat row-column-addressed (RCA) 2-D array can extend its inherent rectilinear 3-D imaging field of view (FOV) to a curvilinear volume region, which is necessary for applications such as abdominal and cardiac imaging. Two concave lenses with radii of 12.7 and 25.4 mm were manufactured using RTV664 silicone. The diverging properties of the lenses were evaluated based on simulations and measurements on several phantoms. The measured FOV for both lenses in contact with tissue mimicking phantom was less than 15% different from the theoretical predictions, i.e., a curvilinear FOV of and for the 12.7- and 25.4-mm radii lenses. A synthetic aperture imaging sequence with single-element transmissions was designed for imaging down to 140 mm at a volume rate of 88 Hz. The performance was evaluated in terms of signal-to-noise ratio, FOV, and full-width at half-maximum (FWHM) of a focused beam. The penetration depths in a tissue mimicking phantom with 0.5-dB/(cm MHz) attenuation were 100 and 125 mm for the lenses with radii of 12.7 and 25.4 mm. The azimuth, elevation, and radial FWHM at 43-mm depth were (5.8, 5.8, 1) and (6, 6, 1) . The results of this study confirm that the proposed lens approach is an effective method for increasing the FOV, when imaging with RCA 2-D arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.