Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Bacterial infections remain a leading threat to global health because of the misuse of antibiotics and the rise in drug‐resistant pathogens. Although several strategies such as photothermal therapy and magneto‐thermal therapy can suppress bacterial infections, excessive heat often damages host cells and lengthens the healing time. Here, a localized thermal managing strategy, thermal‐disrupting interface induced mitigation (TRIM), is reported, to minimize intercellular cohesion loss for accurate antibacterial therapy. The TRIM dressing film is composed of alternative microscale arrangement of heat‐responsive hydrogel regions and mechanical support regions, which enables the surface microtopography to have a significant effect on disrupting bacterial colonization upon infrared irradiation. The regulation of the interfacial contact to the attached skin confines the produced heat and minimizes the risk of skin damage during thermoablation. Quantitative mechanobiology studies demonstrate the TRIM dressing film with a critical dimension for surface features plays a critical role in maintaining intercellular cohesion of the epidermis during photothermal therapy. Finally, endowing wound dressing with the TRIM effect via in vivo studies in S. aureus infected mice demonstrates a promising strategy for mitigating the side effects of photothermal therapy against a wide spectrum of bacterial infections, promoting future biointerface design for antibacterial therapy.
In vitro thin-film mechanical analysis techniques can readily characterize the effects of SC's exposure to UV radiation. The methods used in this study demonstrated commercial sunscreens were able to preserve the biomechanical properties of SC during UV exposure, thus indicating the barrier function of SC was also maintained.
OBJECTIVE: Cosmetic emollients are widely used in skincare formulations due to their ability to 'soften' the skin and modulate formulation spreadability. Though emollients are commonly used, little is known about their effects on the biomechanical barrier properties of human stratum corneum (SC), which play a critical role in consumer perception of formulation efficacy. Accordingly, our objective was to provide new insights with a study involving fourteen cosmetic emollient molecules with widely varying structures, molecular weights, SC diffusivities, topological polar surface areas (TPSAs), viscosities and chemical functionalities. METHODS: Mechanical stress in the SC was measured in vitro using a substrate curvature measurement technique. Stress development due to SC drying was measured before and after topical treatment with cosmetic emollients. Emollient diffusivity and alterations to lipid content in SC after treatment were measured via ATR-FTIR spectroscopy. The maximum penetration volume of emollient in SC was characterized to elucidate mechanisms underlying emollient effects on stress. RESULTS: The application of all cosmetic emollients caused a reduction in SC mechanical stress under dehydrating conditions, and a linear correlation was discovered between emollient penetration volume and the degree of stress reduction. These molecules also induced increases in stress equilibration rate, signalling changes to SC transport kinetics. Stress equilibration rate increases linearly correlated with decreasing intensity of the νCH2 band, indicating a previously unknown interaction between cosmetic emollients and SC lipids. Stress and penetration volume results were rationalized in terms of a multi-parameter model including emollient molecular weight, diffusivity, TPSA and viscosity. CONCLUSION: We provide a new rational basis for understanding the effects of cosmetic emollient choice on biomechanical properties affecting SC barrier function and consumer perception. We demonstrate for the first time that emollients very likely reduce SC mechanical stress through their ability to take up volume when penetrating the SC, and how molecular weight, SC diffusivity, TPSA and viscosity are predictive of this ability. As cosmetic formulations continue to evolve to meet the needs of customers, emollient molecules can be selected that not only contribute to formulation texture and/or spreadability but that also leverage this novel connection between emollient penetration and SC biomechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.