Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules termed damage-associated molecular patterns (DAMPs) that propagate the inflammatory response. The underlying mechanism for PMR, however, is unknown. Here we show that the ill-characterized nerve injury-induced protein 1 (NINJ1) -a cell surface protein with two transmembrane regions -plays an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1 -/macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and failed to release numerous intracellular proteins including High Mobility Group Box 1 (HMGB1, a known DAMP) and Lactate Dehydrogenase (LDH, a standard measure of PMR). Ninj1 -/macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1 -/mice were more susceptible than wildtype mice to Citrobacter rodentium, suggesting a role for PMR in anti-bacterial host defense.Mechanistically, NINJ1 utilized an evolutionarily conserved extracellular α-helical domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held dogma that cell death-related PMR is a passive event.Pyroptosis is a potent inflammatory mode of lytic cell death triggered by diverse infectious and sterile insults 1-3 . It is driven by the pore-forming fragment of gasdermin D (GSDMD) 4-7 and releases two exemplar proteins: interleukin-1β (IL-1β), a pro-inflammatory cytokine, and LDH, a standard marker of PMR and lytic cell death. An early landmark study 8 predicted two sequential steps for pyroptosis: (1) initial formation of a small plasma membrane pore causing IL-1β release and non-selective ionic fluxes, and (2) subsequent PMR attributable to oncotic cell swelling. PMR releases LDH (140 kDa) and large DAMPs. While the predicted size of gasdermin pores (~18 nm inner diameter 9 ) is large enough to release IL-1β (17 kDa, ~4.5 nm diameter), the underlying mechanism for subsequent PMR has been considered a passive osmotic lysis event. An unbiased forward genetic screen identifies NINJ1To identify essential mediators of PMR, we performed a forward genetic screen using bone marrow-derived macrophages (BMDMs) from N-ethyl-N-nitrosourea (ENU)-mutagenized mice.
High-throughput single-cell RNA sequencing is a powerful technique but only generates short reads from one end of a cDNA template, limiting the reconstruction of highly diverse sequences such as antigen receptors. To overcome this limitation, we combined targeted capture and long-read sequencing of T-cell-receptor (TCR) and B-cell-receptor (BCR) mRNA transcripts with short-read transcriptome profiling of barcoded single-cell libraries generated by droplet-based partitioning. We show that Repertoire and Gene Expression by Sequencing (RAGE-Seq) can generate accurate full-length antigen receptor sequences at nucleotide resolution, infer B-cell clonal evolution and identify alternatively spliced BCR transcripts. We apply RAGE-Seq to 7138 cells sampled from the primary tumor and draining lymph node of a breast cancer patient to track transcriptome profiles of expanded lymphocyte clones across tissues. Our results demonstrate that RAGE-Seq is a powerful method for tracking the clonal evolution from large numbers of lymphocytes applicable to the study of immunity, autoimmunity and cancer.
Mutations in the human ALMS1 gene are responsible for Alström syndrome, a disorder in which key metabolic and endocrinological features include childhood-onset obesity, metabolic syndrome, and diabetes, as well as infertility. ALMS1 localizes to the basal bodies of cilia and plays a role in intracellular trafficking, but the biological functions of ALMS1 and how these relate to the pathogenesis of obesity, diabetes, and infertility remain unclear. Here we describe a new mouse model of Alström syndrome, fat aussie, caused by a spontaneous mutation in the Alms1 gene. Fat aussie (Alms1 foz/foz) mice are of normal weight when young but, by 120 d of age, they become obese and hyperinsulinemic. Diabetes develops in Alms1 foz/foz mice accompanied by pancreatic islet hyperplasia and islet cysts. Female mice are fertile before the onset of obesity and metabolic syndrome; however, male fat aussie mice are sterile due to a progressive germ cell loss followed by an almost complete block of development at the round-to-elongating spermatid stage of spermatogenesis. In conclusion, Alms1 foz/foz mouse is a new animal model in which to study the pathogenesis of the metabolic and fertility defects of Alström syndrome, including the role of ALMS1 in appetite regulation, pathogenesis of the metabolic syndrome, pancreatic islet physiology, and spermatogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.