Thanks to their unique optical properties Ge–Sb–S–Se–Te amorphous chalcogenide materials and compounds offer tremendous opportunities of applications, in particular in near and mid-infrared range. This spectral range is for instance of high interest for photonics or optical sensors. Using co-sputtering technique of chalcogenide compound targets in a 200 mm industrial deposition tool, we show how by modifying the amorphous structure of GeSb
w
S
x
Se
y
Te
z
chalcogenide thin films one can significantly tailor their linear and nonlinear optical properties. Modelling of spectroscopic ellipsometry data collected on the as-deposited chalcogenide thin films is used to evaluate their linear and nonlinear properties. Moreover, Raman and Fourier-transform infrared spectroscopies permitted to get a description of their amorphous structure. For the purpose of applications, their thermal stability upon annealing is also evaluated. We demonstrate that depending on the GeSb
w
S
x
Se
y
Te
z
film composition a trade-off between a high transparency in near- or mid-infrared ranges, strong nonlinearity and good thermal stability can be found in order to use such materials for applications compatible with the standard CMOS integration processes of microelectronics and photonics.
A new strategy to elaborate (1-3) type multiferroic nanocomposites with controlled dimensions and vertical alignment is presented. The process involves a supported nanoporous alumina layer as a template for growth of free-standing and vertically aligned CoFe nanopillars using a room temperature pulsed electrodeposition process. BaSrTiO-CoFeO multiferroic nanocomposites were grown through direct deposition of BaSrTiO films by radio-frequency sputtering on the top surface of the pillar structure, with in situ simultaneous oxidation of CoFe nanopillars. The vertically aligned multiferroic nanocomposites were characterized using various techniques for their structural and physical properties. The large interfacial area between the ferrimagnetic and ferroelectric phases leads to a magnetoelectric voltage coefficient as large as ∼320 mV cm Oe at room temperature, reaching the highest values reported so far for vertically architectured nanocomposite systems. This simple method has great potential for large-scale synthesis of many other hybrid vertically aligned multiferroic heterostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.