A radar antenna intercepts thermal radiation from various sources including the ground, the sun, the sky, precipitation, and man-made radiators. In the radar receiver, this external radiation produces noise that constructively adds to the receiver internal noise and results in the overall system noise. Consequently, the system noise power is dependent on the antenna position and needs to be estimated accurately. Inaccurate noise power measurements may lead to reduction of coverage if the noise power is overestimated or to radar data images cluttered by noise speckles if the noise power is underestimated. Moreover, when an erroneous noise power is used at low-to-moderate signal-to-noise ratios, estimators can produce biased meteorological variables. Therefore, to obtain the best quality of radar products, it is desirable to compute meteorological variables using the noise power measured at each antenna position. In this paper, an effective method is proposed to estimate the noise power in real time from measured powers at each radial. The technique uses a set of criteria to detect radar range resolution volumes that do not contain weather signals and uses those to estimate the noise power. The algorithm is evaluated using both simulated and real time series data; results show that the proposed technique accurately produces estimates of the system noise power. An operational implementation of this technique is expected to significantly improve the quality of weather radar products with a relatively small computational burden.
The recently installed S-band phased-array radar (PAR) at the National Weather Radar Testbed (NWRT) offers fast and flexible beam steering through electronic beam forming. This capability allows the implementation of a novel scanning strategy termed beam multiplexing (BMX), with the goal of providing fast updates of weather information with high statistical accuracy. For conventional weather radar the data acquisition time for a sector scan or a volume coverage pattern (VCP) can be reduced by increasing the antenna's rotation rate to the extent that the pedestal allows. However, statistical errors of the spectral moment estimates will increase due to the fewer samples that are available for the estimation. BMX is developed to exploit the idea of collecting independent samples and maximizing the usage of radar resources. An improvement factor is introduced to quantify the BMX performance, which is defined by the reduction in data acquisition time using BMX when the same data accuracy obtained by a conventional scanning strategy is maintained. It is shown theoretically that a fast update without compromising data quality can be achieved using BMX at small spectrum widths and a high signal-to-noise ratio (SNR). Applications of BMX to weather observations are demonstrated using the PAR, and the results indicate that an average improvement factor of 2-4 can be obtained for SNR higher than 10 dB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.