A method for estimation of spectral moments on pulsed weather radars is presented. This scheme operates on oversampled echoes in range; that is, samples of in-phase and quadrature-phase components are collected at a rate several times larger than the reciprocal of the transmitted pulse length. The spectral moments are estimated by suitably combining weighted averages of these oversampled signals in range with usual processing of samples (spaced at the pulse repetition time) at a fixed range location. The weights in range are derived from a whitening transformation; hence, the oversampled signals become uncorrelated and, consequently, the variance of the estimates decreases significantly. Because the estimate errors are inversely proportional to the volume scanning times, it follows that storms can be surveyed much faster than is possible with current processing methods, or equivalently, for the current volume scanning time, accuracy of the estimates can be greatly improved. This significant improvement is achievable at large signal-to-noise ratios.
Since 2007 the advancement of the National Weather Radar Testbed Phased-Array Radar (NWRT PAR) hardware and software capabilities has been supporting the implementation of high-temporal-resolution (;1 min) sampling. To achieve the increase in computational power and data archiving needs required for high-temporal-resolution sampling, the signal processor was upgraded to a scalable, Linux-based cluster with a distributed computing architecture. The development of electronic adaptive scanning, which can reduce update times by focusing data collection on significant weather, became possible through functionality added to the radar control interface and real-time controller. Signal processing techniques were implemented to address data quality issues, such as artifact removal and range-and-velocity ambiguity mitigation, absent from the NWRT PAR at its installation. The hardware and software advancements described above have made possible the development of conventional and electronic scanning capabilities that achieve high-temporalresolution sampling. Those scanning capabilities are sector-and elevation-prioritized scanning, beam multiplexing, and electronic adaptive scanning. Each of these capabilities and related sampling trade-offs are explained and demonstrated through short case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.