The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host–microbiota studies have so far largely relied on bulk tissue analysis1–3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host–microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immuno‑suppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion–adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.
Oral microbiome research has moved from asking “Who’s there?” to “What are they doing?” Understanding what microbes “do” involves multiple approaches, including obtaining genomic information and examining the interspecies interactions. Recently we isolated a human oral Saccharibacteria (TM7) bacterium, HMT-952, strain TM7x, which is an ultrasmall parasite of the oral bacterium Actinomyces odontolyticus. The host-parasite interactions, such as phage-bacterium or Saccharibacteria–host bacterium, are understudied areas with large potential for insight. The Saccharibacteria phylum is a member of Candidate Phyla Radiation, a large lineage previously devoid of cultivated members. However, expanding our understanding of Saccharibacteria-host interactions requires examining multiple phylogenetically distinct Saccharibacteria-host pairs. Here we report the isolation of 3 additional Saccharibacteria species from the human oral cavity in binary coculture with their bacterial hosts. They were obtained by filtering ultrasmall Saccharibacteria cells free of other larger bacteria and inoculating them into cultures of potential host bacteria. The binary cocultures obtained could be stably passaged and studied. Complete closed genomes were obtained and allowed full genome analyses. All have small genomes (<1 Mb) characteristic of parasitic species and dramatically limited de novo synthetic pathway capabilities but include either restriction modification or CRISPR-Cas systems as part of an innate defense against foreign DNA. High levels of gene synteny exist among Saccharibacteria species. Having isolates growing in coculture with their hosts allowed time course studies of growth and parasite-host interactions by phase contrast, fluorescence in situ hybridization, and scanning electron microscopy. The cells of the 4 oral Saccharibacteria species are ultrasmall and could be seen attached to their larger Actinobacteria hosts. Parasite attachment appears to lead to host cell death and lysis. The successful cultivation of Saccharibacteria species has significantly expanded our understanding of these ultrasmall Candidate Phyla Radiation bacteria.
Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms. The most common underlying causes of genetic intractability are restriction-modification (RM) systems, ubiquitous defense mechanisms against xenogeneic DNA that hinder the use of genetic approaches in the vast majority of bacteria and exhibit strain-level variation. Here, we describe a systematic approach to overcome RM systems. Our approach was inspired by a simple hypothesis: if a synthetic piece of DNA lacks the highly specific target recognition motifs for a host’s RM systems, then it is invisible to these systems and will not be degraded during artificial transformation. Accordingly, in this process, we determine the genome and methylome of an individual bacterial strain and use this information to define the bacterium’s RM target motifs. We then synonymously eliminate RM targets from the nucleotide sequence of a genetic tool in silico, synthesize an RM-silent “SyngenicDNA” tool, and propagate the tool as minicircle plasmids, termed SyMPL (SyngenicDNA Minicircle Plasmid) tools, before transformation. In a proof-of-principle of our approach, we demonstrate a profound improvement (five orders of magnitude) in the transformation of a clinically relevant USA300 strain of Staphylococcus aureus. This stealth-by-engineering SyngenicDNA approach is effective, flexible, and we expect in future applications could enable microbial genetics free of the restraints of restriction-modification barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.