The purpose of this study was to determine if the improvement in insulin sensitivity with exercise training is associated with enhanced phosphatidylinositol 3-kinase (PI 3-kinase) activity. Nine sedentary men were studied before and after 7 days of exercise training (1 h/day, approximately 75% maximal oxygen consumption). Insulin sensitivity was determined with a euglycemic-hyperinsulinemic glucose clamp in the sedentary state and 15-17 h after the final exercise bout. PI 3-kinase activity was determined from samples (vastus lateralis) obtained in the fasted condition and after 60 min of submaximal insulin stimulation during the clamp. After exercise, glucose infusion rate increased (P < 0. 05) significantly (means +/- SE, 7.8 +/- 0.5 vs. 9.8 +/- 0.8 mg. kg(-1). min(-1)), indicating improved insulin sensitivity. Insulin-stimulated (insulin stimulated/fasting) phosphotyrosine immunoprecipitable PI 3-kinase activity also increased significantly (P < 0.05) with exercise (3.1 +/- 0.8-fold) compared with the sedentary condition (1.3 +/- 0.1-fold). There was no change in fasting PI 3-kinase activity. These data suggest that an enhancement of insulin signal transduction in skeletal muscle may contribute to the improvement in insulin action with exercise.
The aquaponic principle is the coupling of animal aquaculture (e.g. fish) with plant production (e.g. vegetables) for saving resources. At present, various definitions of aquaponics exist, some bearing the risk of misinterpretation by dismissing the original meaning or being contradictory. In addition, there is no standard terminology for the aspects of coupling between the aquaponic subsystems. In this study, we addressed both issues. (1) We developed new or revised definitions that are summarised by: Aquaponic farming comprises aquaponics (which couples tank‐based animal aquaculture with hydroponics) and trans‐aquaponics, which extends aquaponics to tankless aquaculture as well as non‐hydroponics plant cultivation methods. Within our conceptual system, the term aquaponics corresponds to the definitions of FAO and EU. (2) A system analysis approach was utilised to explore different aquaponic setups aiming to better describe the way aquaponic subsystems are connected. We introduced the new terms ‘coupling type’ and ‘coupling degree’, where the former qualitatively characterises the water‐mediated connections of aquaponic subsystems. A system with on‐demand nutrient water supply for the independent operating plant cultivation is an ‘on‐demand coupled system’ and we propose to deprecate the counterintuitive term ‘decoupled system’ for this coupling type. The coupling degree comprises a set of parameters to quantitatively determine the coupling's efficiency of internal streams, for example, water and nutrients. This new framework forms a basis for improved communication, provides a uniform metric for comparing aquaponic facilities, and offers criteria for facility optimisation. In future system descriptions, it will simplify evaluation of the coupling's contribution to sustainability of aquaponics.
With the general objective of optimizing internal nutrient recycling, circular multitrophic food production systems, e.g., combining fish, plant, and insect larvae production, rely on the quality and composition of sustainable nutritional inputs. Therefore, differences in dissolved and solid nutrient excretion patterns produced by Nile tilapia (Oreochromis niloticus) reared in recirculating aquaculture systems (RAS) with 5% daily water exchange and fed black soldier fly meal (BSFM), poultry by-product meal (PM), poultry blood meal (PBM) and fish meal (FM) as single protein sources were investigated to evaluate the potential for creating specific fish meal-free diets. Fish fed the FM and PM diet showed the significantly best (p < 0.05) and among each other similar (p > 0.05) growth performance (specific growth rate (SGR): 2.12 ± 0.04/2.05 ± 0.11; feed conversion ratio (FCR): 0.86 ± 0.03/0.92 ± 0.01), whereas the PBM diet caused significantly reduced performance (SGR: 1.30 ± 0.02; FCR: 1.79 ± 0.05) in comparison to the FM/PM diet as well as the BSF diet (SGR: 1.76 ± 0.07; FCR: 1.11 ± 0.05). The FM and PM diet resulted in a faster increase and significantly higher dissolved nitrogen and phosphorus levels, while the BSF diet caused faster accumulation and significantly elevated levels of dissolved potassium, magnesium, and copper. The PBM diet resulted in the feces with the significantly highest nutrient density (gross energy, crude protein, and amino acids) but overall much lower dissolved nutrient levels in the water. Results are discussed with regard to implications for developing circular multitrophic food production systems.
In aquaponics and circular multitrophic food production systems, dietary protein source, as well as fish species choice, particularly in cases of different nutritional physiology, could be factors affecting excreted nutrient profiles. Accordingly, growth performance, dissolved nutrient accumulation and feces nutrient profiles were evaluated for African catfish (Clarias gariepinus) reared in recirculating aquaculture systems (RAS) and fed single protein source diets based on black soldier fly larvae meal (BSF), poultry by-product meal (PM), poultry blood meal (PBM) and fish meal (FM) and the results were compared to previous findings for Nile tilapia (Oreochromis niloticus). All diets resulted in significantly different growth performances of African catfish, with FM producing the best growth performance, followed by PM, BSF and PBM. PM resulted in the highest soluble reactive phosphorus concentrations (SRP) in the RAS water; whereas, BSF resulted in the highest K, Mg and Cu concentrations. The highest feces nutrient density was recorded for PBM; whereas, FM and PM yielded the lowest feces nutrient density. Comparing African catfish to Nile tilapia revealed that the former showed significantly better growth performance with FM and PM, however, significantly weaker performance with BSF. Although dissolved K accumulation was similar between species across diets, significant differences were recorded for total inorganic nitrogen and SRP production per unit of feed for individual diets. Despite similar feces nutrient profiles, African catfish produce significantly less feces dry matter per unit of feed for each diet compared to Nile tilapia. Findings are discussed regarding their implications for aquafeed development in the context of circular multitrophic food production systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.