The aquaponic principle is the coupling of animal aquaculture (e.g. fish) with plant production (e.g. vegetables) for saving resources. At present, various definitions of aquaponics exist, some bearing the risk of misinterpretation by dismissing the original meaning or being contradictory. In addition, there is no standard terminology for the aspects of coupling between the aquaponic subsystems. In this study, we addressed both issues. (1) We developed new or revised definitions that are summarised by: Aquaponic farming comprises aquaponics (which couples tank‐based animal aquaculture with hydroponics) and trans‐aquaponics, which extends aquaponics to tankless aquaculture as well as non‐hydroponics plant cultivation methods. Within our conceptual system, the term aquaponics corresponds to the definitions of FAO and EU. (2) A system analysis approach was utilised to explore different aquaponic setups aiming to better describe the way aquaponic subsystems are connected. We introduced the new terms ‘coupling type’ and ‘coupling degree’, where the former qualitatively characterises the water‐mediated connections of aquaponic subsystems. A system with on‐demand nutrient water supply for the independent operating plant cultivation is an ‘on‐demand coupled system’ and we propose to deprecate the counterintuitive term ‘decoupled system’ for this coupling type. The coupling degree comprises a set of parameters to quantitatively determine the coupling's efficiency of internal streams, for example, water and nutrients. This new framework forms a basis for improved communication, provides a uniform metric for comparing aquaponic facilities, and offers criteria for facility optimisation. In future system descriptions, it will simplify evaluation of the coupling's contribution to sustainability of aquaponics.
Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and (F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.