The formation and stabilization of well-defined transition-metal single sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts. Organic ligand coordination to produce a well-defined oxidation state in weakly reducing metal sites at surfaces, desirable for selective catalysis, has not been achieved. Here, we address this using metallic platinum interacting with a dipyridyl tetrazine ligand on a single crystal gold surface. X-ray photoelectron spectroscopy measurements demonstrate the metal-ligand redox activity and are paired with molecular-resolution scanning probe microscopy to elucidate the structure of the metal-organic network. Comparison to the redox-inactive diphenyl tetrazine ligand as a control experiment illustrates that the redox activity and molecular-level ordering at the surface rely on two key elements of the metal complexes: (i) bidentate binding sites providing a suitable square-planar coordination geometry when paired around each Pt, and (ii) redox-active functional groups to enable charge transfer to a well-defined Pt(II) oxidation state. Ligand-mediated control over the oxidation state and structure of single-site metal centers that are in contact with a metal surface may enable advances in higher selectivity for next generation heterogeneous catalysts.
Rational, systematic tuning of single-site metal centers on surfaces offers a new approach to increase selectivity in heterogeneous catalysis reactions. Although such metal centers of uniform oxidation states have been achieved, the ability to control their oxidation states through the use of carefully designed ligands had not been shown. To this end, tetrazine ligands functionalized by two pyridinyl or pyrimidinyl substituents were deposited, along with vanadium metal, on the Au(100) surface. The greater oxidizing power of the bis-pyrimidinyltetrazine facilitates the on-surface redox formation of V(3+), compared to V(2+) when paired with the bis-pyridinyltetrazine, as determined by X-ray photoelectron spectroscopy. This demonstrates the ability to control metal oxidation states in surface coordination architectures by altering the redox properties of organic ligands. The metal-ligand complexes take the form of one-dimensional polymeric chains, resolved by scanning tunneling microscopy. The chain structures in the first layer are very uniform and are based on the same quasi-square-planar coordination geometry around single-site V with either ligand. Formation of a different, dimer structure is observed in the early stages of the second layer formation. These systems offer new opportunities in controlling the oxidation state of single-site transition metal atoms at a surface for new advances in heterogeneous catalysts.
Organic semiconductor applications will significantly benefit from atomically precise, cofacial stacking of extended π-conjugated molecular systems for efficient charge transport. Surface-assisted self-assembly of poly(hetero)cyclic molecules via donor-acceptor type π-π stacking is a promising strategy to organize functional, many-layered architectures. We have employed tris(N-phenyltriazole) as a model system to achieve molecular-level structural ordering through more than 20 molecular layers from its own metal-templated monolayer. Effective charge transport through such layers enabled molecular-resolution imaging by scanning tunneling microscopy. The structure and chemical composition of the films, grown on Ag(111) or Au(100), were further analyzed by noncontact atomic force microscopy and X-ray photoelectron spectroscopy, revealing a cofacial stacking geometry of the molecular layers. Scanning tunneling spectroscopy measurements show a decrease of the band gap with increasing film thickness, consistent with π-π stacking and electron delocalization. The present study provides new strategies for the fabrication of normally inaccessible structural motifs, atomic precision in organic films, and the effective conduction of electrons through multiple organic molecular stacks.
The formation of metal–organic complexes on metal surfaces is a research topic of high interest to develop tunable functional surfaces. One such focus of this research is the formation of single site metal centers that have uniform ligand environments and thus uniform chemistry. We report the complexation of Pt and Ag with the ligand dipyridyl-tetrazine (DPTZ) on Ag(111) and of Pt with DPTZ on the reconstructed Au(100) surface. Each metal atom binds two DPTZ molecules resulting in one-dimensional supramolecular chains across the surface. Pt complexation occurs immediately after Pt deposition at room temperature on either surface. This complexation is improved with annealing to 170 °C on Au(100). DPTZ forms complexes with Ag atoms from the Ag(111) substrate when annealed to 110 °C. No similar complexation with substrate atoms is seen on Au(100). This metal–organic complexation with substrate atoms on Ag(111) takes place even when the DPTZ is already complexed to Pt, demonstrating a Pt replacement reaction by Ag at 80 °C, which has not been reported previously. The metal–organic complexes are characterized by high-resolution electron energy loss spectroscopy (HREELS), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS). This research is among the few to use HREELS to characterize the formation of extended metal organic networks on a surface formed through the redox of the organic species into an anionic state.
The self-assembly of organic and metal-organic species at metal surfaces is a topic of high interest for applications that can benefit from tunable surface functionalization through organic building block design. As the complexity of molecular building blocks increases to direct ordering and function, thermal stability of the adsorbate often increases opening up new surfacecatalyzed reaction pathways. We report dehydrocyclization of octaethylporphyrin to tetrabenzoporphyrin on the Cu(100) and Ag(111) surfaces at 500-600 K. Dehydrocyclization of smaller species is not typically observed on these surfaces at low pressure due to short adsorption lifetimes. The dehydrocyclization of peripheral ethyl groups forms benzo groups which then undergo additional dehydrogenation. The reaction products are characterized by high resolution electron energy loss spectroscopy (HREELS), scanning tunneling microscopy (STM), and X-ray photoelectron spectroscopy (XPS). These results extend our understanding of reaction pathways that may be encountered as molecular building blocks increase in size and complexity on relatively inert surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.