Ionic bonding in supramolecular surface networks is a promising strategy to self-assemble nanostructures from organic building blocks with atomic precision. However, sufficient thermal stability of such systems has not been achieved at metal surfaces, likely due to partial screening of the ionic interactions. We demonstrate excellent stability of a self-assembled ionic network on a metal surface at elevated temperatures. The structure is characterized directly by atomic resolution scanning tunneling microscopy (STM) experiments conducted at 165 °C showing intact domains. This robust nanometer-scale structure is achieved by the on-surface reaction of a simple and inexpensive compound, sodium chloride, with a model system for carboxylate interactions, terephthalic acid (TPA). Rather than distinct layers of TPA and NaCl, angle resolved X-ray photoelectron spectroscopy experiments indicate a replacement reaction on the Cu(100) surface to form Na-carboxylate ionic bonds. Chemical shifts in core level electron states confirm a direct interaction and a +1 charge state of the Na. High-temperature STM imaging shows virtually no fluctuation of Na-TPA island boundaries, revealing a level of thermal stability that has not been previously achieved in noncovalent organic-based nanostructures at surfaces. Comparable strength of intermolecular ionic bonds and intramolecular covalent bonds has been achieved in this surface system. The formation of these highly ordered structures and their excellent thermal stability is dependent on the interplay of adsorbate-substrate and ionic interactions and opens new possibilities for ionic self-assemblies at surfaces with specific chemical function. Robust ionic surface structures have potential uses in technologies requiring high thermal stability and precise ordering through self-assembly.
The formation and stabilization of well-defined transition-metal single sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts. Organic ligand coordination to produce a well-defined oxidation state in weakly reducing metal sites at surfaces, desirable for selective catalysis, has not been achieved. Here, we address this using metallic platinum interacting with a dipyridyl tetrazine ligand on a single crystal gold surface. X-ray photoelectron spectroscopy measurements demonstrate the metal-ligand redox activity and are paired with molecular-resolution scanning probe microscopy to elucidate the structure of the metal-organic network. Comparison to the redox-inactive diphenyl tetrazine ligand as a control experiment illustrates that the redox activity and molecular-level ordering at the surface rely on two key elements of the metal complexes: (i) bidentate binding sites providing a suitable square-planar coordination geometry when paired around each Pt, and (ii) redox-active functional groups to enable charge transfer to a well-defined Pt(II) oxidation state. Ligand-mediated control over the oxidation state and structure of single-site metal centers that are in contact with a metal surface may enable advances in higher selectivity for next generation heterogeneous catalysts.
Regimen adherence remains a major hurdle to the success of daily oral drug regimens for the treatment and prevention of human immunodeficiency virus (HIV) infection. Long-acting drug formulations requiring less-frequent dosing offer an opportunity to improve adherence and allow for more forgiving options with regard to missed doses. The administration of long-acting formulations in a clinical setting enables health care providers to directly track adherence. MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine [EFdA]) is an investigational nucleoside reverse transcriptase translocation inhibitor (NRTTI) drug candidate under investigation as part of a regimen for HIV treatment, with potential utility as a single agent for preexposure prophylaxis (PrEP). The active triphosphate of MK-8591 (MK-8591-TP) exhibits protracted intracellular persistence and, together with the potency of MK-8591, supports its consideration for extended-duration dosing. Toward this end, drug-eluting implant devices were designed to provide prolonged MK-8591 release and Implants, administered subcutaneously, were studied in rodents and nonhuman primates to establish MK-8591 pharmacokinetics and intracellular levels of MK-8591-TP. These data were evaluated against pharmacokinetic and pharmacodynamic models, as well as data generated in phase 1a (Ph1a) and Ph1b clinical studies with once-weekly oral administration of MK-8591. After a single administration in animals, MK-8591 implants achieved clinically relevant drug exposures and sustained drug release, with plasma levels maintained for greater than 6 months that correspond to efficacious MK-8591-TP levels, resulting in a 1.6-log reduction in viral load. Additional studies of MK-8591 implants for HIV treatment and prevention are warranted.
Crystalline and amorphous materials usually possess distinct physicochemical properties due to major variations in long-range and local molecular packings. Enhanced fundamental knowledge of the molecular details of crystalline-to-amorphous interconversions is necessary to correlate the intermolecular structure to material properties and functions. While crystal structures can be readily obtained by X-ray crystallography, the microstructure of amorphous materials has rarely been explored due to a lack of high-resolution techniques capable of probing local molecular structures. Moreover, there is increasing interest in understanding the molecular nature of amorphous solids in pharmaceutical sciences due to the widespread utilization of amorphous active pharmaceutical ingredients (APIs) in pharmaceutical development for solubility and bioavailability enhancement. In this study, we explore multidimensional 13C and 19F magic angle spinning (MAS) NMR spectroscopy to study the molecular packing of amorphous posaconazole (POSA) in conjunction with the crystalline counterpart. Utilizing methods integrating homonuclear and heteronuclear 1H, 13C, and 19F correlation spectroscopy and atomic 19F-to-13C distance measurements, we identified the major differences in molecular packing between crystalline and amorphous POSA. The intermolecular “head-to-head” interaction along the molecule’s major axis, as well as the “head-to-tail” molecular packing perpendicular to the major axis in POSA crystals, was recapitulated by MAS NMR. Furthermore, critical intermolecular distances in the crystal lattice were determined. Most importantly, the head-to-tail contact of two neighboring molecules was found to be preserved in amorphous POSA, suggesting localized molecular order, whereas crucial interactions for head-to-head packing are absent in the amorphous form resulting in long-range disorder. Our study, likely one of the first documented examples, provides molecular-level structural details to understand the molecular mechanism of crystalline-to-amorphous conversion of fluorine-containing drug substances occurring in drug processing and development and establish a high-resolution experimental protocol for investigating amorphous materials.
Rational, systematic tuning of single-site metal centers on surfaces offers a new approach to increase selectivity in heterogeneous catalysis reactions. Although such metal centers of uniform oxidation states have been achieved, the ability to control their oxidation states through the use of carefully designed ligands had not been shown. To this end, tetrazine ligands functionalized by two pyridinyl or pyrimidinyl substituents were deposited, along with vanadium metal, on the Au(100) surface. The greater oxidizing power of the bis-pyrimidinyltetrazine facilitates the on-surface redox formation of V(3+), compared to V(2+) when paired with the bis-pyridinyltetrazine, as determined by X-ray photoelectron spectroscopy. This demonstrates the ability to control metal oxidation states in surface coordination architectures by altering the redox properties of organic ligands. The metal-ligand complexes take the form of one-dimensional polymeric chains, resolved by scanning tunneling microscopy. The chain structures in the first layer are very uniform and are based on the same quasi-square-planar coordination geometry around single-site V with either ligand. Formation of a different, dimer structure is observed in the early stages of the second layer formation. These systems offer new opportunities in controlling the oxidation state of single-site transition metal atoms at a surface for new advances in heterogeneous catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.