Filtration efficiency (FE), differential pressure (ΔP), quality factor (QF), and construction parameters were measured for 32 cloth materials (14 cotton, 1 wool, 9 synthetic, 4 synthetic blends, and 4 synthetic/cotton blends) used in cloth masks intended for protection from the SARS-CoV-2 virus (diameter 100 ± 10 nm). Seven polypropylene-based fiber filter materials were also measured including surgical masks and N95 respirators. Additional measurements were performed on both multilayered and mixed-material samples of natural, synthetic, or natural-synthetic blends to mimic cloth mask construction methods. Materials were microimaged and tested against size selected NaCl aerosol with particle mobility diameters between 50 and 825 nm. Three of the top five best performing samples were woven 100% cotton with high to moderate yarn counts, and the other two were woven synthetics of moderate yarn counts. In contrast to recently published studies, samples utilizing mixed materials did not exhibit a significant difference in the measured FE when compared to the product of the individual FE for the components. The FE and ΔP increased monotonically with the number of cloth layers for a lightweight flannel, suggesting that multilayered cloth masks may offer increased protection from nanometer-sized aerosol with a maximum FE dictated by breathability (i.e., ΔP).
Graphene oxide (GO) in aqueous solution was aerosolized and rapidly dried to produce crumpled nanopaper-like sheets. Online size selection and aerosol mass analysis was used to determine the fractal dimension (D) of crumpled GO nanosheets as 2.54 ± 0.04. That is identical to macroscale materials, such as crumpled balls of paper and foil. Thermal reduction of crumpled GO nanosheets did not change D, even after loss of nearly 25% of the nanosheets mass. We demonstrate that D is able to be tuned by altering solvent conditions. A 10% acetone mixture increased D to 2.68 ± 0.02. Calculations of the confinement force show that crumpling of GO nanosheets is driven by the capillary force associated with rapid solvent loss.
The reduction of graphite oxide (GO) thin films was evaluated at 220 °C using a combination of infrared (FTIR) and X-ray photoemission spectroscopies (XPS). The results were correlated with electrical resistance measurements. The chemical composition of GO was C8(OH)3O0.8 and reduced to C8(OH)0.5O0.3 after nearly 24 h of low-temperature processing, defined as 220 °C. The sheet resistance of dropcast GO thin films processed at 220 °C in air was 8 kΩ sq−1, similar to GO reduced at >800 °C in an inert atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.