Fungal infections represent an important cause of human morbidity and mortality, particularly if the fungi adhere to and grow on both biological and inanimate surfaces as communities of cells (biofilms). Recently, a previously unrecognized yeast, Candida auris, has emerged globally that has led to widespread concern due to the difficulty in treating it with existing antifungal agents. Alarmingly, it is also able to grow as a biofilm that is highly resistant to antifungal agents, yet we are unclear about how it does this. Here, we used a molecular approach to investigate the genes that are important in causing the cells to be resistant within the biofilm. The work provides significant insights into the importance of efflux pumps, which actively pump out toxic antifungal drugs and therefore enhance fungal survival within a variety of harsh environments.
The pleiomorphic yeast Candida albicans is a significant pathogen in immunocompromised individuals. In the oral cavity, C. albicans is an inhabitant of polymicrobial communities, and interspecies interactions promote hyphal formation and biofilm formation. C. albicans colonizes the subgingival area, and the frequency of colonization increases in periodontal disease. In this study, we investigated the interactions between C. albicans and the periodontal pathogen Porphyromonas gingivalis. C. albicans and P. gingivalis were found to coadhere in both the planktonic and sessile phases. Loss of the internalin-family protein InlJ abrogated adhesion of P. gingivalis to C. albicans, and recombinant InlJ protein competitively inhibited interspecies binding. A mutant of C. albicans deficient in expression of major hyphal protein Als3 showed diminished binding to P. gingivalis, and InlJ interacted with Als3 heterologously expressed in Saccharomyces cerevisiae. Transcriptional profiling by RNA sequencing (RNA-Seq) established that 57 genes were uniquely upregulated in an InlJ-dependent manner in P. gingivalis-C. albicans communities, with overrepresentation of those corresponding to 31 gene ontology terms, including those associated with growth and division. Of potential relevance to the disease process, C. albicans induced upregulation of components of the type IX secretion apparatus. Collectively, these findings indicate that InlJ-Als3-dependent binding facilitates interdomain community development between C. albicans and P. gingivalis and that P. gingivalis has the potential for increased virulence within such communities.
There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.
Surfaces within healthcare play a key role in the transmission of drug-resistant pathogens. Candida auris is an emerging multi-drug resistant yeast which has the ability to survive for prolonged periods on environmental surfaces. Here we show that the ability to form cellular aggregates increases survival after 14 days, which coincides with the upregulation of biofilm-associated genes. Additionally, the aggregating strain demonstrated tolerance to clinical concentrations of sodium hypochlorite and remain viable 14 days' post treatment. The ability of C. auris to adhere and persist on environmental surfaces emphasises our need to better understand the biology of this fungal pathogen.
Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host-pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of low cost of establishing such models, as well being easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.