The structure and dynamics of nanostructure films formed by mixtures of soy phosphatidylcholine and glycerol dioleate at the silicon-aqueous interface were studied by grazing incidence neutron spin echo spectroscopy (GINSES), specular and off-specular neutron reflectometry, and small-angle X-ray diffraction. Reverse hexagonal (H) and micellar cubic phase (Fd3m) layers at the solid-liquid interface have been identified with neutron reflectometry measurements. A preferred orientation of the liquid crystalline (LC) domains was observed only for the anisotropic H phase. The size of the LC domains was found to be about 1 micrometer as estimated from the width of the diffraction peaks. GINSES revealed that the cubic phase forms rather rigid films. In comparison, the H film was more flexible, appearing as a modified undulation spectrum of the cylinders due to the interaction with the substrate.
Polymer nanogels are embedded within layers consisting of a nonlamellar liquid crystalline lipid phase to act as thermoresponsive controllers of layer compactness and hydration. As the nanogels change from the swollen to the collapsed state via a temperature trigger, they enable on-demand release of water from the mixed polymer-lipid layer while the lipid matrix remains intact. Combining stimuli-responsive polymers with responsive lipid-based mesophase systems opens up new routes in biomedical applications such as functional biomaterials, bioanalysis and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.