The most common mutation in melanoma, BRAF(V600E), activates the BRAF serine/threonine kinase and causes excessive MAPK pathway activity1,2. BRAF(V600E)mutations are also present in benign melanocytic nevi3, highlighting the importance of additional genetic alterations in the genesis of malignant tumors. Such changes include recurrent copy number variations that result in the amplification of oncogenes4,5. For certain amplifications, the large number of genes in the interval has precluded an understanding of cooperating oncogenic events. Here, we have used a zebrafish melanoma model to test genes in a recurrently amplified region on chromosome 1 for the ability to cooperate with BRAF(V600E) and accelerate melanoma. SETDB1, an enzyme that methylates histone H3 on lysine 9 (H3K9), was found to significantly accelerate melanoma formation in the zebrafish. Chromatin immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-Seq) and gene expression analyses revealed target genes, including Hox genes, that are transcriptionally dysregulated in response to elevated SETDB1. Our studies establish SETDB1 as an oncogene in melanoma and underscore the role of chromatin factors in regulating tumorigenesis.
Melanoma is a tumor of transformed melanocytes, which are derived from the embryonic neural crest. It is unknown to what extent the programs regulating neural crest development interact with mutations in the BRAF oncogene, the gene most commonly mutated in human melanoma1. We have utilized the zebrafish embryo to identify initiating transcriptional events upon BRAFV600E activation in the neural crest lineage. Transgenic mitf-BRAFV600E;p53-/- zebrafish embryos demonstrate a gene signature enriched for markers of multipotent neural crest cells, and exhibit a failure of terminal differentiation of neural crest progenitors. To determine if these early transcriptional events were important for melanoma pathogenesis, we performed a chemical genetic screen to identify small molecule suppressors of the neural crest lineage, which were then tested for effects in melanoma. One class of compounds, inhibitors of dihydroorotate dehydrogenase (DHODH) such as leflunomide, led to an almost complete abrogation of neural crest development in the zebrafish and a reduction in self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting transcriptional elongation of genes required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAFV600E oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have direct bearing upon subsequent melanoma formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.