Facioscapulohumeral dystrophy (FSHD) is one of the most common inherited muscular dystrophies. The causative gene remains controversial and the mechanism of pathophysiology unknown. Here we identify genes associated with germline and early stem cell development as targets of the DUX4 transcription factor, a leading candidate gene for FSHD. The genes regulated by DUX4 are reliably detected in FSHD muscle but not in controls, providing direct support for the model that misexpression of DUX4 is a causal factor for FSHD. Additionally, we show that DUX4 binds and activates LTR elements from a class of MaLR endogenous primate retrotransposons and suppresses the innate immune response to viral infection, at least in part through the activation of DEFB103, a human defensin that can inhibit muscle differentiation. These findings suggest specific mechanisms of FSHD pathology and identify candidate biomarkers for disease diagnosis and progression.
Melanoma is a tumor of transformed melanocytes, which are derived from the embryonic neural crest. It is unknown to what extent the programs regulating neural crest development interact with mutations in the BRAF oncogene, the gene most commonly mutated in human melanoma1. We have utilized the zebrafish embryo to identify initiating transcriptional events upon BRAFV600E activation in the neural crest lineage. Transgenic mitf-BRAFV600E;p53-/- zebrafish embryos demonstrate a gene signature enriched for markers of multipotent neural crest cells, and exhibit a failure of terminal differentiation of neural crest progenitors. To determine if these early transcriptional events were important for melanoma pathogenesis, we performed a chemical genetic screen to identify small molecule suppressors of the neural crest lineage, which were then tested for effects in melanoma. One class of compounds, inhibitors of dihydroorotate dehydrogenase (DHODH) such as leflunomide, led to an almost complete abrogation of neural crest development in the zebrafish and a reduction in self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting transcriptional elongation of genes required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAFV600E oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have direct bearing upon subsequent melanoma formation.
Summary BMP and Wnt signaling pathways control essential cellular responses through activation of the transcription factors SMAD (BMP) and TCF (Wnt). Here, we show that regeneration of hematopoietic lineages following acute injury depends on the activation of each of these signaling pathways to induce expression of key blood genes. Both SMAD1 and TCF7L2 co-occupy sites with master regulators adjacent to hematopoietic genes. In addition, both SMAD1 and TCF7L2 follow the binding of the predominant lineage regulator during differentiation from multipotent hematopoietic progenitor cells to erythroid cells. Furthermore, induction of the myeloid lineage regulator C/EBPα in erythroid cells shifts binding of SMAD1 to sites newly occupied by C/EBPα, while expression of the erythroid regulator GATA1 directs SMAD1 loss on non-erythroid targets. We conclude that the regenerative response mediated by BMP and Wnt signaling pathways is coupled with the lineage master regulators to control the gene programs defining cellular identity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.