The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.
Melanoma is a tumor of transformed melanocytes, which are derived from the embryonic neural crest. It is unknown to what extent the programs regulating neural crest development interact with mutations in the BRAF oncogene, the gene most commonly mutated in human melanoma1. We have utilized the zebrafish embryo to identify initiating transcriptional events upon BRAFV600E activation in the neural crest lineage. Transgenic mitf-BRAFV600E;p53-/- zebrafish embryos demonstrate a gene signature enriched for markers of multipotent neural crest cells, and exhibit a failure of terminal differentiation of neural crest progenitors. To determine if these early transcriptional events were important for melanoma pathogenesis, we performed a chemical genetic screen to identify small molecule suppressors of the neural crest lineage, which were then tested for effects in melanoma. One class of compounds, inhibitors of dihydroorotate dehydrogenase (DHODH) such as leflunomide, led to an almost complete abrogation of neural crest development in the zebrafish and a reduction in self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting transcriptional elongation of genes required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAFV600E oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have direct bearing upon subsequent melanoma formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.