Since the first work by Laurencin and colleagues on the development of polymeric electrospinning for biomedical purposes, the use of electrospinning technology has found broad applications in such areas of tissue regeneration and drug delivery. More recently, coaxial electrospinning has emerged as an important technique to develop scaffolds for regenerative engineering incorporated with drug(s). However, the addition of a softer core layer leads to a reduction in mechanical properties. Here, novel robust tripolymeric triaxially electrospun fibrous scaffolds were developed with a polycaprolactone (PCL) (core layer), a 50:50 poly (lactic-co-glycolic acid) (PLGA) (sheath layer) and a gelatin (intermediate layer) with a dual drug delivery capability was developed through modified electrospinning. A sharp increase in elastic modulus after the incorporation of PCL in the core of the triaxial fibers in comparison with uniaxial PLGA (50:50) and coaxial PLGA (50:50) (sheath)-gelatin (core) fibers was observed. Thermal analysis of the fibrous scaffolds revealed an interaction between the core-intermediate and sheath-intermediate layers of the triaxial fibers contributing to the higher tensile modulus. A simultaneous dual release of model small molecule Rhodamine B (RhB) and model protein Fluorescein isothiocynate (FITC) Bovine Serum Albumin (BSA) conjugate incorporated in the sheath and intermediate layers of triaxial fibers was achieved. The tripolymeric, triaxial electrospun systems were seen to be ideal for the support of mesenchymal stem cell growth, as shrinkage of fibers normally found with conventional electrospun systems was minimized. These tripolymeric triaxial electrospun fibers that are biomechanically competent, biocompatible, and capable of dual drug release are designed for regenerative engineering and drug delivery applications.
HIV/AIDS disproportionately affects African-Americans more than any other racial or ethnic group in the USA. Currently representing only 12% of the US population, African-Americans now comprise close to half of the total reported HIV/AIDS cases in the USA according to the Centers for Disease Control and Prevention since the initial reporting of HIV/AIDS. In this paper, we examined the prevalence and current direction of the HIV/AIDS epidemic in the African-American community especially in comparison to our first call to action in 2008. The situation remains dire and broader attention is necessary from the public health and medical sectors who serve the majority of African-American populations and the community at-large to work towards closing this health disparity gap. This paper thus recommends an action plan for community leaders (i.e., the public health sector, policy makers, public health practitioners, and other stakeholders) to reduce the disparity.
Background Short instructional videos can make learning more efficient through the application of multimedia principles, and video animations can illustrate the complex concepts and dynamic processes that are common in health sciences education. Commercially produced videos are commonly used by medical students but are rarely integrated into curricula. Objective Our goal was to examine student engagement with medical education videos incorporated into a preclinical Cardiovascular Systems course. Methods Students who took the first-year 8-week Cardiovascular Systems course in 2019 and 2020 were included in the study. Videos from Osmosis were recommended to be watched before live sessions throughout the course. Video use was monitored through dashboards, and course credit was given for watching videos. All students were emailed electronic surveys after the final exam asking about the course’s blended learning experience and use of videos. Osmosis usage data for number of video views, multiple choice questions, and flashcards were extracted from Osmosis dashboards. Results Overall, 232/359 (64.6%) students completed surveys, with rates by class of 81/154 (52.6%) for MD Class of 2022, 39/50 (78%) for MD/MPH Class of 2022, and 112/155 (72.3%) for MD Class of 2023. Osmosis dashboard data were available for all 359 students. All students received the full credit offered for Osmosis engagement, and learning analytics demonstrated regular usage of videos and other digital platform features. Survey responses indicated that most students found Osmosis videos to be helpful for learning (204/232, 87.9%; P=.001) and preferred Osmosis videos to the traditional lecture format (134/232, 57.8%; P<.001). Conclusions Commercial medical education videos may enhance curriculum with low faculty effort and improve students’ learning experiences. Findings from our experience at one medical school can guide the effective use of supplemental digital resources for learning, and related evaluation and research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.