For their size, barnacles possess the longest penis of any animal (up to eight times their body length). However, as one of few sessile animals to copulate, they face a trade-off between reaching more mates and controlling ever-longer penises in turbulent flow. We observed that penises of an intertidal barnacle (Balanus glandula) from wave-exposed shores were shorter than, stouter than, and more than twice as massive for their length as, those from nearby protected bays. In addition, penis shape variation was tightly correlated with maximum velocity of breaking waves, and, on all shores, larger barnacles had disproportionately stouter penises. Finally, field experiments confirmed that most of this variation was due to phenotypic plasticity: barnacles transplanted to a wave-exposed outer coast produced dramatically shorter and wider penises than counterparts moved to a protected harbour. Owing to the probable trade-off between penis length and ability to function in flow, and owing to the ever-changing wave conditions on rocky shores, intertidal barnacles appear to have acquired the capacity to change the size and shape of their penises to suit local hydrodynamic conditions. This dramatic plasticity in genital form is a valuable reminder that factors other than the usual drivers of genital diversification-female choice, sexual conflict and male-male competition-can influence genital form.
Pollinating insects are vital to the survival of many primary producers in terrestrial ecosystems, as up to 80-85 % of the world's flowering plants require pollinators for reproduction. Over the last few decades however, numerous pollinating insect populations have declined substantially. The causes of these declines are multifaceted and synergistic, and include pesticides, herbicides, monoculture, urbanization, disease, parasites, and climate change.Here, we present evidence for a generally understudied yet potentially significant source of pollinator mortality, collisions with vehicles. Negative impacts from roads have been observed for the majority of vertebrate groups but studies of the effects on invertebrates have remained largely absent from the scientific literature. We documented road mortality of pollinating insects along a 2 km stretch of highway in Ontario, Canada and used our findings to extrapolate expected levels of road mortality across a number of landscape scales. Our extrapolations demonstrate the potential for loss of hundreds of thousands (on our studied highway) to hundreds of billions (generalised across North America) of Lepidopterans, Hymenopterans and pollinating Dipterans each summer. Our projections of such high levels of annual road mortality highlight the need for research to assess whether the mortality levels observed are contributing to the substantial declines of pollinating insects occurring on a global scale, thus putting the ecological functioning of natural areas and agricultural productivity in jeopardy.
We compared the extent to which offshore and remote-sensing measurements of sea surface temperature (SST), upwelling, and chlorophyll a (Chl a) were concordant with in situ measurements of temperature, Chl a, and water nutrients at Tatoosh Island, Washington for the past 8 yr. Offshore SSTs were significantly correlated with water temperatures at Tatoosh, though consistently 2uC to 3uC warmer. Sea-viewing wide field-of-view sensor Chl a estimates were poor predictors of Chl a at Tatoosh Island measured with an anchored fluorometer. Nitrate and phosphorus estimates at Tatoosh Island were positively correlated with an upwelling index and negatively correlated with SST, as would be expected from an upwelling source. In contrast, ammonium and nitrite were uncorrelated with the upwelling index or SST and showed elevated levels immediately adjacent to Tatoosh Island, suggesting strong local effects of marine invertebrates, birds, and mammals on nutrient dynamics and cycling in coastal ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.