Roadways pose serious threats to animal populations. The installation of roadway mitigation measures is becoming increasingly common, yet studies that rigorously evaluate the effectiveness of these conservation tools remain rare. A highway expansion project in Ontario, Canada included exclusion fencing and ecopassages as mitigation measures designed to offset detrimental effects to one of the most imperial groups of vertebrates, reptiles. Taking a multispecies approach, we used a Before-After-Control-Impact study design to compare reptile abundance on the highway before and after mitigation at an Impact site and a Control site from 1 May to 31 August in 2012 and 2013. During this time, radio telemetry, wildlife cameras, and an automated PIT-tag reading system were used to monitor reptile movements and use of ecopassages. Additionally, a willingness to utilize experiment was conducted to quantify turtle behavioral responses to ecopassages. We found no difference in abundance of turtles on the road between the un-mitigated and mitigated highways, and an increase in the percentage of both snakes and turtles detected dead on the road post-mitigation, suggesting that the fencing was not effective. Although ecopassages were used by reptiles, the number of crossings through ecopassages was lower than road-surface crossings. Furthermore, turtle willingness to use ecopassages was lower than that reported in previous arena studies, suggesting that effectiveness of ecopassages may be compromised when alternative crossing options are available (e.g., through holes in exclusion structures). Our rigorous evaluation of reptile roadway mitigation demonstrated that when exclusion structures fail, the effectiveness of population connectivity structures is compromised. Our project emphasizes the need to design mitigation measures with the biology and behavior of the target species in mind, to implement mitigation designs in a rigorous fashion, and quantitatively evaluate road mitigation to ensure allow for adaptive management and optimization of these increasingly important conservation tools.
Pollinating insects are vital to the survival of many primary producers in terrestrial ecosystems, as up to 80-85 % of the world's flowering plants require pollinators for reproduction. Over the last few decades however, numerous pollinating insect populations have declined substantially. The causes of these declines are multifaceted and synergistic, and include pesticides, herbicides, monoculture, urbanization, disease, parasites, and climate change.Here, we present evidence for a generally understudied yet potentially significant source of pollinator mortality, collisions with vehicles. Negative impacts from roads have been observed for the majority of vertebrate groups but studies of the effects on invertebrates have remained largely absent from the scientific literature. We documented road mortality of pollinating insects along a 2 km stretch of highway in Ontario, Canada and used our findings to extrapolate expected levels of road mortality across a number of landscape scales. Our extrapolations demonstrate the potential for loss of hundreds of thousands (on our studied highway) to hundreds of billions (generalised across North America) of Lepidopterans, Hymenopterans and pollinating Dipterans each summer. Our projections of such high levels of annual road mortality highlight the need for research to assess whether the mortality levels observed are contributing to the substantial declines of pollinating insects occurring on a global scale, thus putting the ecological functioning of natural areas and agricultural productivity in jeopardy.
Reptiles are globally endangered, and roadways are a major threat to many species. We extracted corticosterone from turtle claws to examine whether proximity to roads increased stress levels. Our novel sampling method was successful; however we found no difference in corticosterone levels between road-adjacent and natural sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.