The positive manifold—the finding that cognitive ability measures demonstrate positive correlations with one another—has led to models of intelligence that include a general cognitive ability or general intelligence (g). This view has been reinforced using factor analysis and reflective, higher-order latent variable models. However, a new theory of intelligence, Process Overlap Theory (POT), posits that g is not a psychological attribute but an index of cognitive abilities that results from an interconnected network of cognitive processes. These competing theories of intelligence are compared using two different statistical modeling techniques: (a) latent variable modeling and (b) psychometric network analysis. Network models display partial correlations between pairs of observed variables that demonstrate direct relationships among observations. Secondary data analysis was conducted using the Hungarian Wechsler Adult Intelligence Scale Fourth Edition (H-WAIS-IV). The underlying structure of the H-WAIS-IV was first assessed using confirmatory factor analysis assuming a reflective, higher-order model and then reanalyzed using psychometric network analysis. The compatibility (or lack thereof) of these theoretical accounts of intelligence with the data are discussed.
We tested the frequent assumption that the difficulty of word retrieval increases when a speaker is being observed and evaluated. We modified the Trier Social Stress Test (TSST) so that participants believed that its evaluative observation components continued throughout the duration of a subsequent word retrieval task, and measured participants' reported tip of the tongue (TOT) states. Participants in this TSST condition experienced more TOTs than participants in a comparable, placebo TSST condition in which there was no suggestion of evaluative observation. This experiment provides initial evidence confirming the assumption that evaluative observation by a third party can be disruptive to word retrieval. We interpret our findings by proposing an extension to a well-supported theoretical model of TOTs.
In a recent publication in the Journal of Intelligence, Dennis McFarland mischaracterized previous research using latent variable and psychometric network modeling to investigate the structure of intelligence. Misconceptions presented by McFarland are identified and discussed. We reiterate and clarify the goal of our previous research on network models, which is to improve compatibility between psychological theories and statistical models of intelligence. WAIS-IV data provided by McFarland were reanalyzed using latent variable and psychometric network modeling. The results are consistent with our previous study and show that a latent variable model and a network model both provide an adequate fit to the WAIS-IV. We therefore argue that model preference should be determined by theory compatibility. Theories of intelligence that posit a general mental ability (general intelligence) are compatible with latent variable models. More recent approaches, such as mutualism and process overlap theory, reject the notion of general mental ability and are therefore more compatible with network models, which depict the structure of intelligence as an interconnected network of cognitive processes sampled by a battery of tests. We emphasize the importance of compatibility between theories and models in scientific research on intelligence.
The positive manifold—the finding that cognitive ability measures demonstrate positive correlations with one another—has led to models of intelligence that include a general cognitive ability or general intelligence (g). This view has been reinforced using factor analysis and latent variable models. However, a new theory of intelligence, Process Overlap Theory (POT; Kovacs & Conway, 2016), posits that g is not a psychological attribute but an index of cognitive abilities that results from an interconnected network of cognitive processes. From this perspective, psychometric network analysis is an attractive alternative to latent variable modeling. Network analyses display partial correlations among observed variables that demonstrate direct relationships among observed variables. To demonstrate the benefits of this approach, the Hungarian Wechsler Adult Intelligence Scale Fourth Edition (H-WAIS-IV; Wechsler, 2008) was analyzed using both psychometric network analysis and latent variable modeling. Network models were directly compared to latent variable models. Results indicate that the H-WAIS-IV data was better fit by network models than by latent variable models. We argue that POT, and network models, provide a more accurate view of the structure of intelligence than traditional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.