The first example of a transition-metal-catalyzed, meta-selective C–H bromination procedure is reported. In the presence of catalytic [{Ru(p-cymene)Cl2}2], tetrabutylammonium tribromide can be used to functionalize the meta C–H bond of 2-phenylpyridine derivatives, thus affording difficult to access products which are highly predisposed to further derivatization. We demonstrate this utility with one-pot bromination/arylation and bromination/alkenylation procedures to deliver meta-arylated and meta-alkenylated products, respectively, in a single step.
Functionalization
at the α-position of carbonyl compounds
has classically relied on enolate chemistry. As a result, the generation
of a new C–X bond, where X is more electronegative than carbon
requires an oxidation event. Herein we show that, by rendering the
α-position of amides electrophilic through a mild and chemoselective
umpolung transformation, a broad range of widely available oxygen,
nitrogen, sulfur, and halogen nucleophiles can be used to generate
α-functionalized amides. More than 60 examples are presented
to establish the generality of this process, and calculations of the
mechanistic aspects underline a fragmentation pathway that accounts
for the broadness of this methodology.
Both aryl components of diaryliodonium salts can be used in a domino one-pot reaction via in situ generation of a directing group. A number of heterocycles undergo N-arylation which is followed by ruthenium-catalyzed C-arylation. Notably the reaction extends well to unsymmetrical diaryliodonium salts with a number of highly selective examples shown.
A new approach for
the synthesis of 1,4-dicarbonyl compounds is
reported. Chemoselective activation of amide carbonyl functionality
and subsequent umpolung viaN-oxide
addition generates an electrophilic enolonium species that can be
coupled with a wide range of nucleophilic enolates. The method conveys
broad functional group tolerance on both components, does not suffer
from formation of homocoupling byproducts and avoids the use of transition
metal catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.