In an early stage of developing emerging technologies, there is often great uncertainty regarding their future success. Companies can reduce this uncertainty by listening to the voice of customers as the customer eventually decides to accept an emerging technology or not. We show that risk and benefit perceptions are central determinants of acceptance of emerging technologies. We present an analysis of risk and benefit perception of self-driving cars from March 2015 until October 2016. In this period, we analyzed 1,963,905 tweets using supervised machine learning for text classification. Furthermore, we developed two new metrics, risk rate (RR) and benefit rate (BR), which allow analyzing risk and benefit perceptions on social media quantitatively. With our results, we provide impetus for further research on acceptance of self-driving cars and a methodological contribution to acceptance of emerging technologies research. Furthermore, we identify crucial issues in the public perception of self-driving cars and provide guidance for the management of emerging technologies to increase the likelihood of their acceptance.
Gaining a better understanding of human-computer interaction in multiple-goal environments, such as driving, is critical as people increasingly use information technology to accomplish multiple tasks simultaneously. Extensive research shows that decision biases can be utilized as effective cues to guide user interaction in single-goal environments. This paper is a first step towards understanding the effect of decision biases in multiple-goal environments. We analyzed data from a field experiment during which we compared drivers' decisions on parking lots in a single-goal environment with drivers' decisions in a multiple-goal environment when being exposed to the default option bias. We show that the default option bias is effective in multiplegoal environments. Our results have important implications for the design of human-computer interaction in multiple-goal environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.