In an early stage of developing emerging technologies, there is often great uncertainty regarding their future success. Companies can reduce this uncertainty by listening to the voice of customers as the customer eventually decides to accept an emerging technology or not. We show that risk and benefit perceptions are central determinants of acceptance of emerging technologies. We present an analysis of risk and benefit perception of self-driving cars from March 2015 until October 2016. In this period, we analyzed 1,963,905 tweets using supervised machine learning for text classification. Furthermore, we developed two new metrics, risk rate (RR) and benefit rate (BR), which allow analyzing risk and benefit perceptions on social media quantitatively. With our results, we provide impetus for further research on acceptance of self-driving cars and a methodological contribution to acceptance of emerging technologies research. Furthermore, we identify crucial issues in the public perception of self-driving cars and provide guidance for the management of emerging technologies to increase the likelihood of their acceptance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.