Clostridium difficile infection remains a major healthcare burden. Until the recent introduction of fidaxomicin, antimicrobial treatments were limited to metronidazole and vancomycin. The emergence of epidemic C. difficile PCR ribotype 027 and its potential link to decreased antibiotic susceptibility highlight the lack of large-scale antimicrobial susceptibility and epidemiological data available. We report results of epidemiological and antimicrobial susceptibility investigations of C. difficile isolates collected prior to fidaxomicin introduction, establishing important baseline data. Thirty-nine sites in 22 countries submitted a total of 953 C. difficile isolates for PCR ribotyping, toxin testing, and susceptibility testing to metronidazole, vancomycin, fidaxomicin, rifampicin, moxifloxacin, clindamycin, imipenem, chloramphenicol, and tigecycline. Ninety-nine known ribotypes were identified. Ribotypes 027, 014, 001/072, and 078 were most frequently isolated in line with previous European studies. There was no evidence of resistance to fidaxomicin, and reduced susceptibility to metronidazole and vancomycin was also scarce. Rifampicin, moxifloxacin, and clindamycin resistance (13%, 40%, and 50% of total isolates, respectively) were evident in multiple ribotypes. There was a significant correlation between lack of ribotype diversity and greater antimicrobial resistance (measured by cumulative resistance score). Well-known epidemic ribotypes 027 and 001/072 were associated with multiple antimicrobial resistance, but high levels of resistance were also observed, particularly in 018 and closely related emergent ribotype 356 in Italy. This raises the possibility of antimicrobial exposure as the underlying reason for their appearance, and highlights the need for ongoing epidemiological and antimicrobial resistance surveillance.
This report describes a high-throughput assay to identify substances that reduce the frequency of conjugation in Gram-negative bacteria. Bacterial conjugation is largely responsible for the spread of multiple antibiotic resistances in human pathogens. Conjugation inhibitors may provide a means to control the spread of antibiotic resistance. An automated conjugation assay was developed that used plasmid R388 and a laboratory strain of Escherichia coli as a model system, and bioluminescence as a reporter for conjugation activity. Frequencies of conjugation could be measured continuously in real time by the amount of light produced, and thus the effects of inhibitory compounds could be determined quantitatively. A control assay, run in parallel, allowed elimination of compounds affecting cell growth, plasmid stability or gene expression. The automated conjugation assay was used to screen a database of more than 12 000 microbial extracts known to contain a wide variety of bioactive compounds (the NatChem library). The initial hit rate was 1?4 %. From these, 48 extracts containing active compounds and representing a variety of organisms and extraction conditions were subjected to fractionation (24 fractions per extract). The 52 most active fractions were subjected to a secondary analysis to determine the range of plasmid inhibition. Plasmids R388, R1 and RP4 were used as representatives of a variety of plasmid transfer systems. Only one fraction (of complex composition) affected transfer of all three plasmids, while four other fractions were active against two of them. Two separate compounds were identified from these fractions: linoleic acid and dehydrocrepenynic acid. Downstream analysis showed that the chemical class of unsaturated fatty acids act as true inhibitors of conjugation.
Fidaxomicin susceptibility was retained post-introduction, and resistance to metronidazole and vancomycin was rare. Continued surveillance is needed, with more accurate classification and clarification of ribotype subtypes to further understand their role in the spread of resistance. Other factors may also influence changes in prevalence of C. difficile ribotypes with reduced antibiotic susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.