Non-technical summary The renin-angiotensin system regulates the function of the cardiovascular system via the peptide hormone angiotensin II through a cellular receptor, the angiotensin type 1 receptor. Angiotensin II can become overactive and contribute to the development of cardiovascular disease, resulting in hypertension and other disorders such as enlargement of the heart muscle cells, termed cardiomyocyte hypertrophy. Here we demonstrate, for the first time, that an alternative angiotensin peptide, called angiotensin 1-9, is able to inhibit cardiomyocyte hypertrophy induced by angiotensin II by binding and activating an alternative angiotensin receptor, the type 2 receptor. This has implications for our understanding of the renin-angiotensin system in normal cardiovascular function and in cardiovascular disease. AbstractThe renin-angiotensin system (RAS) regulates blood pressure mainly via the actions of angiotensin (Ang)II, generated via angiotensin converting enzyme (ACE). The ACE homologue ACE2 metabolises AngII to Ang1-7, decreasing AngII and increasing Ang1-7, which counteracts AngII activity via the Mas receptor. However, ACE2 also converts AngI to Ang1-9, a poorly characterised peptide which can be further converted to Ang1-7 via ACE. Ang1-9 stimulates bradykinin release in endothelium and has antihypertrophic actions in the heart, attributed to its being a competitive inhibitor of ACE, leading to decreased AngII, rather than increased Ang1-7. To date no direct receptor-mediated effects of Ang1-9 have been described. To further understand the role of Ang1-9 in RAS function we assessed its action in cardiomyocyte hypertrophy in rat neonatal H9c2 and primary adult rabbit left ventricular cardiomyocytes, compared to Ang1-7. Cardiomyocyte hypertrophy was stimulated with AngII or vasopressin, significantly increasing cell size by approximately 1.2-fold (P < 0.05) as well as stimulating expression of the hypertrophy gene markers atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain and myosin light chain (2-to 5-fold, P < 0.05). Both Ang1-9 and Ang1-7 were able to block hypertrophy induced by either agonist (control, 186.4 μm; AngII, 232.8 μm; 198.3 μm; 195.9 μm; P < 0.05). The effects of Ang1-9 were not inhibited by captopril, supporting previous evidence that Ang1-9 acts independently of Ang1-7. Next, we investigated receptor signalling via angiotensin type 1 and type 2 receptors (AT 1 R, AT 2 R) and Mas. The AT 1 R antagonist losartan blocked AngII-induced, but not vasopressin-induced, hypertrophy. Losartan did not block the antihypertrophic effects of Ang1-9, or Ang1-7 on vasopressin-stimulated cardiomyocytes. The Mas antagonist A779 efficiently blocked the antihypertrophic effects of Ang1-7, without affecting Ang1-9. Furthermore, Ang1-7 activity was also inhibited in the presence of the bradykinin type 2 receptor antagonist HOE140, without affecting Ang1-9. Moreover, we observed that the AT 2 R antagonist PD123,319 abolished the antihypertrophic effects of Ang1-9, without affe...
PURPOSE Late morbidity of surgically repaired coarctation of the aorta includes early cardiovascular and cerebrovascular disease, shortened life expectancy, abnormal vasomodulator response, hypertension and exercise-induced hypertension in the absence of recurrent coarctation. Observational studies have linked patterns of arch remodeling (Gothic, Crenel, and Romanesque) to late morbidity, with Gothic arches having the highest incidence. We evaluated flow in native and surgically repaired aortic arches to correlate respective hemodynamic indices with incidence of late morbidity. METHODS Three dimensional reconstructions of each remodeled arch were created from an anatomic stack of magnetic resonance (MR) images. A structured mesh core with a boundary layer was generated. Computational fluid dynamic (CFD) analysis was performed assuming peak flow conditions with a uniform velocity profile and unsteady turbulent flow. Wall shear stress (WSS), pressure and velocity data were extracted. RESULTS The region of maximum WSS was located in the mid-transverse arch for the Crenel, Romanesque and Native arches. Peak WSS was located in the isthmus of the Gothic model. Variations in descending aorta flow patterns were also observed among the models. CONCLUSION The location of peak WSS is a primary difference among the models tested, and may have clinical relevance. Specifically, the Gothic arch had a unique location of peak WSS with flow disorganization in the descending aorta. Our results suggest that varied patterns and locations of WSS resulting from abnormal arch remodeling may exhibit a primary effect on clinical vascular dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.