We measured soil surface CO 2 efflux (F s ) in loblolly pine stands (Pinus taeda L.) located on the Virginia Piedmont (VA) and South Carolina Coastal Plain (SC) in efforts to assess the impact climate, productivity, and cultural practices have on F s in the managed loblolly pine ecosystem. The effect of stand age on F s was examined using a replicated chronosequence approach in which stands ranging from 1 to 25 years since planting were investigated. Soil CO 2 efflux was measured on both VA and SC sites for over a year using a closed dynamic system. Multiple linear regression was used to evaluate F s correlates and examine the relationship between candidate explanatory variables and F s . Soil temperature (top 10 cm) was the major correlate with F s on both locations. We observed a positive age effect on F s in VA stands and no relationship between age and F s in SC stands. Annual soil C efflux declined with stand age in SC due to both reductions in soil temperatures as crown closure occurs and a diminishing heterotrophic C substrate pool. Annual estimated efflux ranges from 16.7 to 13.2 Mg C ha À1 for 1 and 20-year-old stands, respectively. In contrast, annual soil C efflux increased with age in VA stands as a result of the positive relationship between stand age and F s , which appears to be related to an increase in the contribution of root respiration to total F s over time. In VA stands, efflux estimates range from 7.6 to 12.3 Mg C ha À1 for 1 and 20-year-old stands, respectively. These results demonstrate the need to further consider the impact forest management and within-region variability have on soil C efflux over time when estimating C budgets.
Research question: A key task for sports managers of elite sports clubs is to create an ideal environment that enables athletes to perform at their best. Therefore, we investigate the relationship among monetary incentives, organizational support, and athletic performance in elite team sports.
We explored the relationship between tree growth, water use, and related hydraulic traits in Populus deltoides Bartr. ex Marsh.and hybrid clones, to examine potential trade-offs between growth and water use efficiency. Nine genotypes, six P. deltoides and three hybrid clones, that represented genotypes with high (Group H), intermediate (Group I), and low (Group L) growth performance were selected for study, based on year-two standing stem biomass in a replicated field trial. In year four, tree growth, transpiration (Et), canopy stomatal conductance (Gs), whole-tree hydraulic conductance (Gp), and carbon isotope discrimination (Δ13C) were measured. Tree sap flux was measured continuously using thermal dissipation probes. We hypothesized that Group H genotypes would have increased growth efficiency (GE), increased water use efficiency of production (WUEp, woody biomass growth/Et), lower Δ13C, and greater Gp than slower growing genotypes. Tree GE increased with relative growth rate (RGR), and mean GE in Group H was significantly greater than L, but not I. Tree WUEp ranged between 1.7 and 3.9 kg biomass m3 H2O−1, which increased with RGR. At similar levels of Et, WUEp was significantly greater in Group H (2.45 ± 0.20 kg m−3), compared to I (2.03 ± 0.18 kg m−3) or L (1.72 ± 0.23 kg m−3). Leaf and wood Δ13C scaled positively with stem biomass growth but was not correlated with WUEp. However, at a similar biomass increment, clones in Group H and I had significantly lower leaf Δ13C than Group L. Similarly, Group H clones had a significantly lower wood Δ13C than Group L, supporting our hypothesis of increased WUE in larger trees. Tree physiological and hydraulic traits partially explain differences in WUEp and Δ13C, and suggest that clone selection and management activities that increase tree biomass production will likely increase tree and stand WUE. However, more research is needed to discern the underlying hydraulic mechanisms responsible for the higher WUE exhibited by large trees and distinct clones.
In the past, assessing ancestry relied on the naked eye and observer experience; however, replicability has become an important aspect of such analysis through the application of metric techniques. This study examines palate shape and assesses ancestry quantitatively using a 3D digitizer and shape-matching and machine learning methods. Palate curves and depths were recorded, processed, and tested for 376 individuals. Palate shape was an accurate indicator of ancestry in 58% of cases. Cluster analysis revealed that the parabolic, hyperbolic, and elliptical shapes are discrete from one another. Preliminary results indicate that palate depth in Hispanic individuals is greatest. Palate shape appears to be a useful indicator of ancestry, particularly when assessed by a computer. However, these data suggest that palate shape is not useful for assessing ancestry in Hispanic individuals. Although ancestry may be determined from palate shape, the use of multiple features is recommended and more reliable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.