This review article presents recent advancements in the design and fabrication of thin‐film (<3 μm) lead zirconate titanate (PZT) microelectromechanical system (MEMS) devices. The article covers techniques for optimizing highly (001)/(100) oriented chemical solution deposited PZT films to achieve improved piezoelectric coefficients. These PZT films combined with surface and bulk micromachining techniques are fabricated into actuators and transducers for radio frequency (RF) switches, nanomechanical logic, resonators, and power transformers for use in communication systems and phased‐array radar. In addition, the large relative displacements generated by PZT thin films have been used to demonstrate mechanical mobility in MEMS devices, including insect‐inspired flight actuators and ultrasonic traveling wave motors. In conjunction with actuation, PZT films are being developed for feedback sensors for the integrated control of insect‐inspired robots.
Liquid metals are ideally suited for creating low resistance traces able to undergo large mechanical strains. In this work, multilayer fluidic channels in soft silicone are used to create two inductor topologies, a solenoid and a double planar coil, based on the liquid metal galinstan. Electromechanical models were developed for the inductance upon stretching for each inductor, finding that the double planar coil has lower strain sensitivity in each direction than the solenoid. A three turn double planar coil and six turn solenoid, with unstretched inductances of approximately 250 nH and 55 nH respectively, were fabricated and tested using custom tensile and compressive strain testing setups and compared with the analytical model. The double planar coil was found to increase in inductance when stretched in either in-plane axes, with a measured rise of approximately 40% for 100% strain. The solenoid decreased in inductance by 24% for 100% strain along the core direction, and increased by 50% for the same strain along the core width.
In this work, silicone loaded with magnetic particles is investigated for creating a composite with higher permeability while still maintaining stretchability. Magnetic and mechanical properties are first characterized for composites based on both spherical and platelet particle geometries. The first magnetic-core stretchable inductors are then demonstrated using the resulting ferroelastomer. Solenoid inductors based on liquid metal galinstan are then demonstrated around a ferroelastomeric core and shown to survive uniaxial strains up to 100%. Soft elastomers loaded with magnetic particles were found to increase the core permeability and inductance density of stretchable inductors by nearly 200%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.