Oxygen vacancies in SiO2 have long been regarded as bistable, forming a Si-Si dimer when neutral and a puckered configuration when positively charged. We report first-principles calculations of O vacancies in amorphous SiO2 supercells that unveil significantly more complex behavior. We find that the vast majority of O vacancies do not pucker after capture of a hole, but are shallow traps. The remaining vacancies exhibit two distinct types of puckering. Upon capturing an electron, one type forms a metastable dipole, while the other collapses to a dimer. A statistical distribution of O vacancies is obtained, and the implications for charge transport and trapping in SiO2 are discussed.
-Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.