A survey of Antarctic waters along the East Scotia Ridge in the Southern Ocean reveals a new vent biogeographic province among previously uncharacterized deep-sea hydrothermal vent communities.
The phylogeny of the superfamily Chirostyloidea (Decapoda: Anomura) has been poorly understood owing to limited taxon sampling and discordance between different genes. We present a nine-gene dataset across 15 chirostyloids, including all known yeti crabs (Kiwaidae), to improve the resolution of phylogenetic affinities within and between the different families, and to date key divergences using fossil calibrations. This study supports the monophyly of Chirostyloidea and, within this, a basal split between Eumunididae and a Kiwaidae–Chirostylidae clade. All three families originated in the Mid-Cretaceous, but extant kiwaids and most chirostylids radiated from the Eocene onwards. Within Kiwaidae, the basal split between the seep-endemic Kiwa puravida and a vent clade comprising Kiwa hirsuta and Kiwa spp. found on the East Scotia and Southwest Indian ridges is compatible with a hypothesized seep-to-vent evolutionary trajectory. A divergence date estimate of 13.4–25.9 Ma between the Pacific and non-Pacific lineages is consistent with Kiwaidae spreading into the Atlantic sector of the Southern Ocean via the newly opened Drake Passage. The recent radiation of Kiwaidae adds to the list of chemosynthetic fauna that appear to have diversified after the Palaeocene/Eocene Thermal Maximum, a period of possibly widespread anoxia/dysoxia in deep-sea basins.
Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlanticfocused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor.Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.