The dielectrophoretic effect is a phenomenon in which dipole-dipole interactions are induced between particles in a suspension by an electric field.1−5 This dipole interaction leads to the formation of chains or fibrils parallel to the applied electric field. Recently, the dielectrophoretic effect has been shown to be a possible composite assembly technique permitting property changes to be induced with the appropriate electric fields.6,7 The results presented in this paper show that the dielectrophoretic assembly process can be used to engineer anisotropy into composite materials. Various filler materials are aligned in a thermoset polyurethane matrix and the dielectric properties are measured. Comparisons are drawn between the dielectrophoretically assembled composites and those processed conventionally in the absence of an electric field. Dielectric properties are modeled with modified mixing laws and discussed in relation to the composite microstructure and the alpha relaxations of the polymer phase.
It has been found that electric field induced fibrolysis of suspended dielectric powder in a variety of uncured thermoset polymeric materials is a potential fabrication means to assemble ceramic-polymer composites. The resulting composite material consists of a quasi 1–3 connectivity pattern due to the formation of fibrils by the ceramic powder. For a given thermoset polymer, the degree to which these fibrils form is strongly dependent on both the magnitude and frequency of the applied field. Fibril formation is maximized at certain ac frequencies independent of the volume fraction of filler utilized. Outside these frequency ranges, electroviscous behavior and the associated fibrolysis are drastically diminished or even nonexistent. The critical frequency values and their relation to the ideal assembly conditions for this class of composite materials are the focus of this paper.
The role of absolute pressure in deposition testing is reviewed from first principles. Relevant dimensionless parameters for deposition testing are developed and dynamic similarity conditions are assessed in detail. Criteria for establishing appropriate conditions for laboratory studies of deposition are established pursuant to the similarity variables. The role of pressure is particularly singled out for consideration relative to other variables such as temperature, particle size, and test article geometry/scaling. A case study is presented for deposition in a generic array of impinging jets. A fixed quantity (2g) of 0–10micron Arizona Road Dust (ARD) is delivered to the impingement array at three different temperatures (290, 500, and 725K) and at fixed pressure ratio. Deposition results are presented for operating pressures from 1 to 15atm. Surface scans show that the height of deposit cones at the impingement sites decreases with increasing pressure at constant temperature and pressure ratio. This reduction is explained by the lower “effective” Stokes number that occurs at high particle Reynolds numbers, yielding fewer particle impacts at high pressure. A companion CFD study identifies the additional role of Reynolds number in both the impingement hole losses as well as the shear layer thickness.
Ceramic-polymer composites with a 1–3 connectivity can be created via a novel process called dielectrophoretic assembly. The process involves an electric field which is applied to a suspension of ceramic particles in an uncured thermoset polymer matrix. Under appropriate conditions, the applied electric field acts to induce a spatial redistribution of the particles into a chained or fibril structure. It was shown previously that the electrorheological response and fibril microstructure are dependent on both the frequency and magnitude of the applied alternating electric field.3 This paper will show that the frequency dependence of the uncured thermoset polymer suspensions results from the complex electrical phenomena specific to each thermoset system. Specifically, it will be shown through low field dielectric measurements and high field current-voltage analysis that the dielectrophoretic effect can be limited by electrode polarization, ionic conductivity, and space charge relaxation. It is the frequency dependence of these limiting phenomena that gives rise to the observed frequency dependence in the dielectrophoretic force of attraction being utilized to drive particulate assembly.
Using the dielectrophoretic effect, it is possible to fabricate polymer/ceramic composite materials in which the filler phase can be manipulated to form a desired microstructure. This is performed via the application of an electric field to a colloidal suspension consisting of a filler material dispersed in a fluid polymer medium. Field induced dipole-dipole interactions cause particles to experience a mutual interaction resulting in distinct particle chains which align parallel to the applied electric field direction. This chained microstructure can then be "frozen in" by crosslinking the polymer matrix. The chaining phenomena is dependent on both the magnitude and the frequency of the applied field. Optimum assembly conditions for this process are determined via optical microscopy and electrorheological measurements. The dielectrophoretic assembly process also has the advantage of in-situ quality control through dielectric measurements. Both the degree of alignment and the batch uniformity can be confirmed via dielectric measurements. By varying the applied field and frequency, chain coarseness can be manipulated giving rise to the ability to "tune" the properties of the composite. The dielectrophoretic assembly process is projected to be utilized for electrical, structural and thermal composite applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.