The role of absolute pressure in deposition testing is reviewed from first principles. Relevant dimensionless parameters for deposition testing are developed and dynamic similarity conditions are assessed in detail. Criteria for establishing appropriate conditions for laboratory studies of deposition are established pursuant to the similarity variables. The role of pressure is particularly singled out for consideration relative to other variables such as temperature, particle size, and test article geometry/scaling. A case study is presented for deposition in a generic array of impinging jets. A fixed quantity (2g) of 0–10micron Arizona Road Dust (ARD) is delivered to the impingement array at three different temperatures (290, 500, and 725K) and at fixed pressure ratio. Deposition results are presented for operating pressures from 1 to 15atm. Surface scans show that the height of deposit cones at the impingement sites decreases with increasing pressure at constant temperature and pressure ratio. This reduction is explained by the lower “effective” Stokes number that occurs at high particle Reynolds numbers, yielding fewer particle impacts at high pressure. A companion CFD study identifies the additional role of Reynolds number in both the impingement hole losses as well as the shear layer thickness.
A companion experimental and numerical study was conducted for the performance of a row of five sweeping jet (SJ) film cooling holes consisting of conventional curved fluidic oscillators with an aspect ratio (AR) of unity and a hole spacing of P/D = 8.5. Adiabatic film effectiveness (η), thermal field (θ), convective heat transfer coefficient (h), and discharge coefficient (CD) were measured at two different freestream turbulence levels (Tu = 0.4% and 10.1%) and four blowing ratios (M = 0.98, 1.97, 2.94, and 3.96) at a density ratio of 1.04 and hole Reynolds number of ReD = 2800. Adiabatic film effectiveness and thermal field data were also acquired for a baseline 777-shaped hole. The SJ film cooling hole showed significant improvement in cooling effectiveness in the lateral direction due to the sweeping action of the fluidic oscillator. An unsteady Reynolds-averaged Navier–Stokes (URANS) simulation was performed to evaluate the flow field at the exit of the hole. Time-resolved flow fields revealed two alternating streamwise vortices at all blowing ratios. The sense of rotation of these alternating vortices is opposite to the traditional counter-rotating vortex pair (CRVP) found in a “jet in crossflow” and serves to spread the film coolant laterally.
A new turbine cascade has been constructed that is designed to investigate the performance of actual nozzle guide vane hardware at temperatures representative of modern gas turbine engines. The facility is designed to investigate internal and external deposition, analyze the effectiveness of new cooling techniques, characterize material systems such as metal substrates or coatings, and assess the aerodynamic performance of a vane. The results presented here are the first results obtained in this new facility. External deposition on cooled CFM56 nozzle guide vanes has been explored at inlet temperatures of 1090° C, 1265° C, and 1350° C. Results at 1090° C have been compared to similar results in a previous facility. External deposition tests at temperatures greater than 1100° C on actual turbine hardware have not been reported publicly prior to this paper. These results show that deposition is concentrated at the stagnation line at all three inlet conditions. The amount of deposition on the vane pressure surface increased with increasing inlet temperatures.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.