The tandem asymmetric conjugate addition of alkyl or aryl groups to enones and subsequent silyl trapping has already been achieved and yields valuable silyl enol ethers. Herein, the first method for the respective addition of alkenyl groups is reported, which is based on a rhodium(I)‐catalyzed addition of readily available alkenylzirconocenes. As prerequisite for silyl trapping, the initially formed enolates have to be transmetalated from zirconium to lithium by treatment with methyllithium prior to addition of the silyl chloride. Starting from 5‐ to 7‐membered cycloalkenones, the respective silyl enol ethers were obtained in excellent yields and ≥93% ee; an acyclic substrate furnished a moderate enantioselectivity. Besides trimethylsilyl chloride, the silylation was also performed with tert‐butyldimethylsilyl chloride, and the synthetic scope was evaluated by employing five different alkenyl groups. Moreover, the mechanism of this sequence was elucidated by 1H NMR studies, and the efficiency of catalyst control was exemplified by synthesis of a cis‐3,5‐disubstituted cyclohexanone which, due to strong substrate control, cannot be obtained by copper‐catalyzed conjugate addition.magnified image
(R)-Sarkomycin was prepared using a five-step total synthesis. Key steps in the enantioselective construction of the targeted scaffold were a rhodium-catalyzed asymmetric conjugate alkenyl addition with subsequent silyl trapping and a Mukaiyama aldol reaction with aqueous formaldehyde. Protection of the hydroxy group as a THP acetal and oxidative cleavage of the C,C-double bond provided a stable direct precursor to the natural product. The final liberation was carried out under slightly acidic conditions in a microwave-assisted reaction, resulting in a high yield of the "deceptive" sarkomycin. This represents the shortest enantioselective synthesis of this rather unstable compound to date and the first to employ asymmetric catalysis to introduce the stereogenic center.
First Tandem Asymmetric Conjugate Addition of Alkenyl Nucleophiles and Silyl Trapping of the Intermediate Enolates. -The asymmetric Rh-catalyzed addition of alkenylzirconocenes is described. High enantioselectivities are obtained even with the challenging cyclopentenone as a substrate. -(WESTMEIER, J.; PFAFF, C.; SIEWERT, J.; VON ZEZSCHWITZ*, P.; Adv. Synth. Catal. 355 (2013) 13, 2651-2658, http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.