Key PointsQuestionCan machine learning algorithms identify oncology patients at risk of short-term mortality to inform timely conversations between patients and physicians regrading serious illness?FindingsIn this cohort study of 26 525 patients seen in oncology practices within a large academic health system, machine learning algorithms accurately identified patients at high risk of 6-month mortality with good discrimination and positive predictive value. When the gradient boosting algorithm was applied in real time, most patients who were classified as having high risk were deemed appropriate by oncology clinicians for a conversation regarding serious illness.MeaningIn this study, machine learning algorithms accurately identified patients with cancer who were at risk of 6-month mortality, suggesting that these models could facilitate more timely conversations between patients and physicians regarding goals and values.
IMPORTANCE Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and patient outcomes. OBJECTIVE To determine the effect of a clinician-directed intervention integrating machine learning mortality predictions with behavioral nudges on motivating clinician-patient SICs. DESIGN, SETTING, AND PARTICIPANTS This stepped-wedge cluster randomized clinical trial was conducted across 20 weeks (from June 17 to November 1, 2019) at 9 medical oncology clinics (8 subspecialty oncology and 1 general oncology clinics) within a large academic health system in Pennsylvania. Clinicians at the 2 smallest subspecialty clinics were grouped together, resulting in 8 clinic groups randomly assigned to the 4 intervention wedge periods. Included participants in the intention-to-treat analyses were 78 oncology clinicians who received SIC training and their patients (N = 14 607) who had an outpatient oncology encounter during the study period. INTERVENTIONS (1) Weekly emails to oncology clinicians with SIC performance feedback and peer comparisons; (2) a list of up to 6 high-risk patients (Ն10% predicted risk of 180-day mortality) scheduled for the next week, estimated using a validated machine learning algorithm; and (3) opt-out text message prompts to clinicians on the patient's appointment day to consider an SIC. Clinicians in the control group received usual care consisting of weekly emails with cumulative SIC performance. MAIN OUTCOMES AND MEASURES Percentage of patient encounters with an SIC in the intervention group vs the usual care (control) group. RESULTS The sample consisted of 78 clinicians and 14 607 patients. The mean (SD) age of patients was 61.9 (14.2) years, 53.7% were female, and 70.4% were White. For all encounters, SICs were conducted among 1.3% in the control group and 4.6% in the intervention group, a significant difference (adjusted difference in percentage points, 3.3; 95% CI, 2.3-4.5; P < .001). Among 4124 high-risk patient encounters, SICs were conducted among 3.6% in the control group and 15.2% in the intervention group, a significant difference (adjusted difference in percentage points, 11.6; 95% CI, 8.2-12.5; P < .001). CONCLUSIONS AND RELEVANCE In this stepped-wedge cluster randomized clinical trial, an intervention that delivered machine learning mortality predictions with behavioral nudges to oncology clinicians significantly increased the rate of SICs among all patients and among patients with high mortality risk who were targeted by the intervention. Behavioral nudges combined with machine learning mortality predictions can positively influence clinician behavior and may be applied more broadly to improve care near the end of life.
IMPORTANCE Machine learning (ML) algorithms can identify patients with cancer at risk of short-term mortality to inform treatment and advance care planning. However, no ML mortality risk prediction algorithm has been prospectively validated in oncology or compared with routinely used prognostic indices.OBJECTIVE To validate an electronic health record-embedded ML algorithm that generated real-time predictions of 180-day mortality risk in a general oncology cohort. DESIGN, SETTING, AND PARTICIPANTSThis prognostic study comprised a prospective cohort of patients with outpatient oncology encounters between March 1, 2019, and April 30, 2019. An ML algorithm, trained on retrospective data from a subset of practices, predicted 180-day mortality risk between 4 and 8 days before a patient's encounter. Patient encounters took place in 18 medical or gynecologic oncology practices, including 1 tertiary practice and 17 general oncology practices, within a large US academic health care system. Patients aged 18 years or older with outpatient oncology or hematology and oncology encounters were included in the analysis. Patients were excluded if their appointment was scheduled after weekly predictions were generated and if they were only evaluated in benign hematology, palliative care, or rehabilitation practices.EXPOSURES Gradient-boosting ML binary classifier. MAIN OUTCOMES AND MEASURESThe primary outcome was the patients' 180-day mortality from the index encounter. The primary performance metric was the area under the receiver operating characteristic curve (AUC). RESULTS Among 24 582 patients, 1022 (4.2%) died within 180 days of their index encounter. Their median (interquartile range) age was 64.6 (53.6-73.2) years, 15 319 (62.3%) were women, 18 015 (76.0%) were White, and 10 658 (43.4%) were seen in the tertiary practice. The AUC was 0.89 (95% CI, 0.88-0.90) for the full cohort. The AUC varied across disease-specific groups within the tertiary practice (AUC ranging from 0.74 to 0.96) but was similar between the tertiary and general oncology practices. At a prespecified 40% mortality risk threshold used to differentiate high-vs low-risk patients, observed 180-day mortality was 45.2% (95% CI, 41.3%-49.1%) in the high-risk group vs 3.1% (95% CI, 2.9%-3.3%) in the low-risk group. Integrating the algorithm into the Eastern Cooperative Oncology Group and Elixhauser comorbidity index-based classifiers resulted in favorable reclassification (net reclassification index, 0.09 [95% CI, 0.04-0.14] and 0.23 [95% CI, 0.20-0.27], respectively). CONCLUSIONS AND RELEVANCEIn this prognostic study, an ML algorithm was feasibly integrated into the electronic health record to generate real-time, accurate predictions of short-term mortality for patients with cancer and outperformed routinely used prognostic indices. This algorithm may be used to inform behavioral interventions and prompt earlier conversations about goals of care and end-of-life preferences among patients with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.