Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly $1.7 billion in local government expenditures and approximately $830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors.
Background:The coronavirus disease 2019 (COVID-19) pandemic challenges hospital leaders to make time-sensitive, critical decisions about clinical operations and resource allocations.Objective: To estimate the timing of surges in clinical demand and the best-and worst-case scenarios of local COVID-19induced strain on hospital capacity, and thus inform clinical operations and staffing demands and identify when hospital capacity would be saturated.Design: Monte Carlo simulation instantiation of a susceptible, infected, removed (SIR) model with a 1-day cycle.Setting: 3 hospitals in an academic health system. Patients:All people living in the greater Philadelphia region. Measurements:The COVID-19 Hospital Impact Model (CHIME) (http://penn-chime.phl.io) SIR model was used to estimate the time from 23 March 2020 until hospital capacity would probably be exceeded, and the intensity of the surge, including for intensive care unit (ICU) beds and ventilators.Results: Using patients with COVID-19 alone, CHIME estimated that it would be 31 to 53 days before demand exceeds existing hospital capacity. In best-and worst-case scenarios of surges in the number of patients with COVID-19, the needed total capacity for hospital beds would reach 3131 to 12 650 across the 3 hospitals, including 338 to 1608 ICU beds and 118 to 599 ventilators.Limitations: Model parameters were taken directly or derived from published data across heterogeneous populations and practice environments and from the health system's historical data. CHIME does not incorporate more transition states to model infection severity, social networks to model transmission dynamics, or geographic information to account for spatial patterns of human interaction. Conclusion:Publicly available and designed for hospital operations leaders, this modeling tool can inform preparations for capacity strain during the early days of a pandemic.
Key PointsQuestionCan machine learning algorithms identify oncology patients at risk of short-term mortality to inform timely conversations between patients and physicians regrading serious illness?FindingsIn this cohort study of 26 525 patients seen in oncology practices within a large academic health system, machine learning algorithms accurately identified patients at high risk of 6-month mortality with good discrimination and positive predictive value. When the gradient boosting algorithm was applied in real time, most patients who were classified as having high risk were deemed appropriate by oncology clinicians for a conversation regarding serious illness.MeaningIn this study, machine learning algorithms accurately identified patients with cancer who were at risk of 6-month mortality, suggesting that these models could facilitate more timely conversations between patients and physicians regarding goals and values.
IMPORTANCE Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and patient outcomes. OBJECTIVE To determine the effect of a clinician-directed intervention integrating machine learning mortality predictions with behavioral nudges on motivating clinician-patient SICs. DESIGN, SETTING, AND PARTICIPANTS This stepped-wedge cluster randomized clinical trial was conducted across 20 weeks (from June 17 to November 1, 2019) at 9 medical oncology clinics (8 subspecialty oncology and 1 general oncology clinics) within a large academic health system in Pennsylvania. Clinicians at the 2 smallest subspecialty clinics were grouped together, resulting in 8 clinic groups randomly assigned to the 4 intervention wedge periods. Included participants in the intention-to-treat analyses were 78 oncology clinicians who received SIC training and their patients (N = 14 607) who had an outpatient oncology encounter during the study period. INTERVENTIONS (1) Weekly emails to oncology clinicians with SIC performance feedback and peer comparisons; (2) a list of up to 6 high-risk patients (Ն10% predicted risk of 180-day mortality) scheduled for the next week, estimated using a validated machine learning algorithm; and (3) opt-out text message prompts to clinicians on the patient's appointment day to consider an SIC. Clinicians in the control group received usual care consisting of weekly emails with cumulative SIC performance. MAIN OUTCOMES AND MEASURES Percentage of patient encounters with an SIC in the intervention group vs the usual care (control) group. RESULTS The sample consisted of 78 clinicians and 14 607 patients. The mean (SD) age of patients was 61.9 (14.2) years, 53.7% were female, and 70.4% were White. For all encounters, SICs were conducted among 1.3% in the control group and 4.6% in the intervention group, a significant difference (adjusted difference in percentage points, 3.3; 95% CI, 2.3-4.5; P < .001). Among 4124 high-risk patient encounters, SICs were conducted among 3.6% in the control group and 15.2% in the intervention group, a significant difference (adjusted difference in percentage points, 11.6; 95% CI, 8.2-12.5; P < .001). CONCLUSIONS AND RELEVANCE In this stepped-wedge cluster randomized clinical trial, an intervention that delivered machine learning mortality predictions with behavioral nudges to oncology clinicians significantly increased the rate of SICs among all patients and among patients with high mortality risk who were targeted by the intervention. Behavioral nudges combined with machine learning mortality predictions can positively influence clinician behavior and may be applied more broadly to improve care near the end of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.