High-throughput screening is routinely employed as a method for the identification of novel hit structures. Large numbers of active compounds are typically procured in this way and must undergo a rigorous validation process. This process is described in detail for a collection of screening hits identified as inhibitors of IkappaB kinase-beta (IKKbeta), a key regulatory enzyme in the nuclear factor-kappaB (NF-kappaB) pathway. From these studies, a promising hit series was selected. Subsequent lead generation activities included the development of a pharmacophore hypothesis and structure-activity relationship (SAR) for the hit series. This led to the exploration of related scaffolds offering additional opportunities, and the various structural classes were comparatively evaluated for enzyme inhibition, selectivity, and drug-like properties. A novel lead series of thienopyridines was thereby established, and this series advanced into lead optimization for further development.
Dengue virus (DENV) is a mosquito-borne flavivirus that poses a threat to public health, yet no antiviral drug is available. We performed a high-throughput phenotypic screen using the Novartis compound library and identified candidate chemical inhibitors of DENV. This chemical series was optimized to improve properties such as anti-DENV potency and solubility. The lead compound, NITD-688, showed strong potency against all four serotypes of DENV and demonstrated excellent oral efficacy in infected AG129 mice. There was a 1.44-log reduction in viremia when mice were treated orally at 30 milligrams per kilogram twice daily for 3 days starting at the time of infection. NITD-688 treatment also resulted in a 1.16-log reduction in viremia when mice were treated 48 hours after infection. Selection of resistance mutations and binding studies with recombinant proteins indicated that the nonstructural protein 4B is the target of NITD-688. Pharmacokinetic studies in rats and dogs showed a long elimination half-life and good oral bioavailability. Extensive in vitro safety profiling along with exploratory rat and dog toxicology studies showed that NITD-688 was well tolerated after 7-day repeat dosing, demonstrating that NITD-688 may be a promising preclinical candidate for the treatment of dengue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.