The Lick Observatory's Shane 3-meter telescope has been upgraded with a new infrared instrument (ShARCS -Shane Adaptive optics infraRed Camera and Spectrograph) and dual-deformable mirror adaptive optics (AO) system (ShaneAO). We present first-light measurements of imaging sensitivity in the Ks band. We compare measured results to predicted signal-to-noise ratio and magnitude limits from modeling the emissivity and throughput of ShaneAO and ShARCS. The model was validated by comparing its results to the Keck telescope adaptive optics system model and then by estimating the sky background and limiting magnitudes for IRCAL, the previous infra-red detector on the Shane telescope, and comparing to measured, published results. We predict that the ShaneAO system will measure lower sky backgrounds and achieve 20% higher throughput across the JHK bands despite having more optical surfaces than the current system. It will enable imaging of fainter objects (by 1-2 magnitudes) and will be faster to reach a fiducial signal-to-noise ratio by a factor of 10-13. We highlight the improvements in performance over the previous AO system and its camera, IRCAL.
SCALES is a high-contrast, infrared coronagraphic imager and integral field spectrograph (IFS) to be deployed behind the W.M. Keck Observatory adaptive optics system. A reflective optical design allows diffraction-limited imaging over a large wavelength range (1.0 -5.0 µm). A microlens array-based IFS coupled with a lenslet reformatter ("slenslit") allow spectroscopy at both low (R = 35 -250) and moderate (R = 2000 -6500) spectral resolutions. The large wavelength range, diffraction-limited performance, high contrast coronagraphy and cryogenic operation present a unique optical design challenge. We present the full SCALES optical design, including performance modeling and analysis and manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.