The incorporation of an easily oxidized arylsulfide moiety facilitates the photocatalytic generation of alkene radical cations that undergo a variety of cycloaddition reactions with electron-rich reaction partners. The sulfide moiety can subsequently be reductively cleaved in a traceless fashion, affording products that are not otherwise directly accessible using photoredox catalysis. This approach constitutes a novel oxidative “redox auxiliary” strategy that offers a practical means to circumvent a fundamental thermodynamic limitation facing photoredox reactions.
The sole method available for the photocycloaddition of unconjugated aliphatic alkenes is the Cu‐catalyzed Salomon–Kochi reaction. The [Cu(OTf)]2⋅benzene catalyst that has been standard in this reaction for many decades, however, is air‐sensitive, prone to photodecomposition, and poorly reactive towards sterically bulky alkene substrates. Using bench‐stable precursors, an improved catalyst system with superior reactivity and photostability has been designed, and it offers significantly expanded substrate scope. The utility of this new catalyst for the preparation of sterically crowded cyclobutane structures is highlighted through the preparation of the cores of the natural products sulcatine G and perforatol.
While trifluoromethylthiolation of aryl halides has been extensively explored, the current methods require complex and/or air-sensitive catalysts. Reported here is a method employing a bench-stable Ni(II) salt and an iridium photocatalyst that can mediate the trifluoromethylthiolation of a wide range of electronically diverse aryl and heteroaryl iodides, likely via a Ni(I)/Ni(III) catalytic cycle. The reaction has broad functional group tolerance and potential for application in medicinal chemistry, as demonstrated by a late-stage functionalization approach to access (racemic)-Monepantel.
While the area of trifluoromethylthiolation of aryl halides has been extensively explored, the current methods require complex and/or air-sensitive catalysts. Reported here is a method employing a bench-stable nickel(II) salt and an iridium photocatalyst that can mediate the trifluoromethylthiolation of a wide range of electronically diverse aryl and heteroaryl iodides, likely via a Ni(I)/Ni(III) catalytic cycle. The reaction has broad functional group tolerance and potential for application in medicinal chemistry, as demonstrated by a late-stage functionalization approach to access (racemic)-Monepantel.
The sole method available for the photocycloaddition of unconjugated aliphatic alkenes is the Cu‐catalyzed Salomon–Kochi reaction. The [Cu(OTf)]2⋅benzene catalyst that has been standard in this reaction for many decades, however, is air‐sensitive, prone to photodecomposition, and poorly reactive towards sterically bulky alkene substrates. Using bench‐stable precursors, an improved catalyst system with superior reactivity and photostability has been designed, and it offers significantly expanded substrate scope. The utility of this new catalyst for the preparation of sterically crowded cyclobutane structures is highlighted through the preparation of the cores of the natural products sulcatine G and perforatol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.