Visual and haptic simulation of bone surgery can support and extend current surgical training techniques. The authors present a system for simulating surgeries involving bone manipulation, such as temporal bone surgery and mandibular surgery, and discuss the automatic computation of surgical performance metrics. Experimental results confirm the system's construct validity.
One of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.
One of the most important advantages of computer simulators for surgical training is the opportunity they afford for independent learning. However, if the simulator does not provide useful instructional feedback to the user, this advantage is significantly blunted by the need for an instructor to supervise and tutor the trainee while using the simulator. Thus, the incorporation of relevant, intuitive metrics is essential to the development of efficient simulators. Equally as important is the presentation of such metrics to the user in such a way so as to provide constructive feedback that facilitates independent learning and improvement. This paper presents a number of novel metrics for the automated evaluation of surgical technique. The general approach was to take criteria that are intuitive to surgeons and develop ways to quantify them in a simulator. Although many of the concepts behind these metrics have wide application throughout surgery, they have been implemented specifically in the context of a simulation of mastoidectomy. First, the visuohaptic simulator itself is described, followed by the details of a wide variety of metrics designed to assess the user's performance. We present mechanisms for presenting visualizations and other feedback based on these metrics during a virtual procedure. We further describe a novel performance evaluation console that displays metric-based information during an automated debriefing session. Finally, the results of several user studies are reported, providing some preliminary validation of the simulator, the metrics, and the feedback mechanisms. Several machine learning algorithms, including Hidden Markov Models and a Naïve Bayes Classifier, are applied to our simulator data to automatically differentiate users' expertise levels.
One of the most important advantages of computer simulators for surgical training is the opportunity they afford for independent learning. However, if the simulator does not provide useful instructional feedback to the user, this advantage is significantly blunted by the need for an instructor to supervise and tutor the trainee while using the simulator. Thus, the incorporation of relevant, intuitive metrics is essential to the development of efficient simulators. Equally as important is the presentation of such metrics to the user in such a way so as to provide constructive feedback that facilitates independent learning and improvement. This paper presents a number of novel metrics for the automated evaluation of surgical technique. The general approach was to take criteria that are intuitive to surgeons and develop ways to quantify them in a simulator. Although many of the concepts behind these metrics have wide application throughout surgery, they have been implemented specifically in the context of a simulation of mastoidectomy. First, the visuohaptic simulator itself is described, followed by the details of a wide variety of metrics designed to assess the user's performance. We present mechanisms for presenting visualizations and other feedback based on these metrics during a virtual procedure. We further describe a novel performance evaluation console that displays metric-based information during an automated debriefing session. Finally, the results of several user studies are reported, providing some preliminary validation of the simulator, the metrics, and the feedback mechanisms. Several machine learning algorithms, including Hidden Markov Models and a Naïve Bayes Classifier, are applied to our simulator data to automatically differentiate users' expertise levels.
As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. We report the first shared SMP algorithm for fully parallel contour tree computation, with formal guarantees of O(lg n lgt) parallel steps and O(n lg n) work, and implementations with up to 10× parallel speed up in OpenMP and up to 50× speed up in NVIDIA Thrust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.