Objectives: Understanding how signal processing influences neural activity in the brain with hearing loss is relevant to the design and evaluation of features intended to alleviate speech-in-noise deficits faced by many hearing aid wearers. Here, we examine whether hearing aid processing schemes that are designed to improve speech-in-noise intelligibility (i.e., directional microphone and noise reduction) also improve electrophysiological indices of speech processing in older listeners with hearing loss. Design: The study followed a double-blind within-subjects design. A sample of 19 older adults (8 females; mean age = 73.6 years, range = 56–86 years; 17 experienced hearing aid users) with a moderate to severe sensorineural hearing impairment participated in the experiment. Auditory-evoked potentials associated with processing in cortex (P1-N1-P2) and subcortex (frequency-following response) were measured over the course of two 2-hour visits. Listeners were presented with sequences of the consonant-vowel syllable /da/ in continuous speech-shaped noise at signal to noise ratios (SNRs) of 0, +5, and +10 dB. Speech and noise stimuli were pre-recorded using a Knowles Electronics Manikin for Acoustic Research (KEMAR) head and torso simulator outfitted with hearing aids programmed for each listener’s loss. The study aid programs were set according to 4 conditions: (1) omnidirectional microphone, (2) omnidirectional microphone with noise reduction, (3) directional microphone, and (4) directional microphone with noise reduction. For each hearing aid condition, speech was presented from a loudspeaker located at 1 m directly in front of KEMAR (i.e., 0° in the azimuth) at 75 dB SPL and noise was presented from a matching loudspeaker located at 1 m directly behind KEMAR (i.e., 180° in the azimuth). Recorded stimulus sequences were normalized for speech level across conditions and presented to listeners over electromagnetically shielded ER-2 ear-insert transducers. Presentation levels were calibrated to match the output of listeners’ study aids. Results: Cortical components from listeners with hearing loss were enhanced with improving SNR and with use of a directional microphone and noise reduction. On the other hand, subcortical components did not show sensitivity to SNR or microphone mode but did show enhanced encoding of temporal fine structure of speech for conditions where noise reduction was enabled. Conclusions: These results suggest that auditory-evoked potentials may be useful in evaluating the benefit of different noise-mitigating hearing aid features.
Background Many studies on the efficacy of directional microphones (DIRMs) and noise-reduction (NR) algorithms were not conducted under realistic signal-to-noise ratio (SNR) conditions. A Repeat-Recall Test (RRT) was developed previously to partially address this issue. Purpose This study evaluated whether the RRT could provide a more comprehensive understanding of the efficacy of a DIRM and NR algorithm under realistic SNRs. Possible interaction with listener working memory capacity (WMC) was assessed. Research Design This study uses a double-blind, within-subject repeated measures design. Study Sample Nineteen listeners with a moderate degree of hearing loss participated. Data Collection and Analysis The RRT was administered with participants wearing the study hearing aids (HAs) under two microphones (omnidirectional versus directional) by two NR (on versus off) conditions. Speech was presented from 0° at 75 dB SPL and a continuous noise from 180° at SNRs of 0, 5, 10, and 15 dB. The order of SNR and HA conditions was counterbalanced across listeners. Each test condition was completed twice in two 2-hour sessions separated by one month. Results The recall scores of listeners were used to group listeners into good and poor WMC groups. Analysis using linear mixed-effects models revealed significant effects of context, SNR, and microphone for all four measures (repeat, recall, listening effort, and tolerable time). NR was only significant on the listening effort scale in the DIRM mode at an SNR of 5 dB. Listeners with good WMC performed better on all measures of the RRT and benefitted more from context. Although DIRM benefitted listeners with good and poor WMC, the benefits differed by context and SNR. Conclusions The RRT confirmed the efficacy of DIRM and NR on several outcome measures under realistic SNRs. It also highlighted interactions between WMC and sentence context on feature efficacy.
In human neonates, orienting behavior in response to an off-midline sound source disappears around the first postnatal month, only to re-emerge at ~4 months. To date, it is unclear whether sound localization processes continue to operate between postnatal months 1 and 3. Here, we used an event-related potential, reflecting change detection in the auditory cortices, to measure the cortical responses elicited by large (± 90° relative to midline), infrequent changes in sound source location in 2-, 5-, 8- and 13-month-old infants. Both fast-negative mismatch negativity (MMN) Näätänen et al. (2007) and slow-positive mismatch response (MMR) Trainor et al. (2003) were elicited from all age groups. However, both components were smaller and the fast-negative component occurred later in the 2-month-old group than in older age groups. Additionally, the slow-positive component tended to diminish in amplitude with increasing age, whereas the fast-negative component grew larger and tended to occur earlier with increasing age. These results suggest that the cortical representation of sound location matures similarly to representations of pitch and duration. A subsequent investigation of 2-month-old infants confirmed that the observed MMR and MMN were elicited by changes in sound source location, and were not merely attributable to changes in loudness cues. The presence of both MMR and MMN in the 2-month-old group indicates that the cortex is able to detect changes in sound location despite the behavioral insensitivity observed around 1-3 months of age.
A method that tracked tolerable noise level (TNL) over time while maintaining subjective speech intelligibility was reported previously. Although this method was reliable and efficacious as a research tool, its clinical efficacy and predictive ability of real-life hearing aid satisfaction were not measured.The study evaluated an adaptive method to estimate TNL using slope and variance of tracked noise level as criteria in a clinical setting. The relationship between TNL and subjective hearing aid satisfaction in noisy environments was also investigated.A single-blinded, repeated-measures design.Seventeen experienced hearing aid wearers with bilateral mild-to-moderately-severe sensorineural hearing loss.Participants listened to 82-dB SPL continuous speech and tracked the background noise level that they could “put up with” while subjectively understanding >90% of the speech material. Two trials with each babble noise and continuous speech-shaped noise were measured in a single session. All four trials were completed aided using the participants’ own hearing aids. The stimuli were presented in the sound field with speech from 0° and noise from the 180° azimuth. The instantaneous tolerable noise level was measured using a custom program and scored in two ways; the averaged TNL (aTNL) over the 2-min trial and the estimated TNL (eTNL) as soon as the listeners reached a stable noise estimate. Correlation between TNL and proportion of satisfied noisy environments was examined using the MarkeTrak questionnaire.All listeners completed the tracking of noise tolerance procedure within 2 min with good reliability. Sixty-five percent of the listeners yielded a stable noise estimate after 59.9 sec of actual test time. The eTNL for all trials was 78.6 dB SPL (standard deviation [SD] = 4.4 dB). The aTNL for all trials was 78.0 dB SPL (SD = 3.3 dB) after 120 sec. The aTNL was 79.2 dB SPL (SD = 5.4 dB) for babble noise and 77.0 dB SPL (SD = 5.9 dB) for speech-shaped noise. High within-session test–retest reliability was evident. The 95% confidence interval was 1.5 dB for babble noise and 2.8 dB for continuous speech-shaped noise. No significant correlation was measured between overall hearing aid satisfaction and the aTNL (ρ = 0.20 for both noises); however, a significant relationship between aTNL and proportion of satisfied noisy situations was evident (ρ = 0.48 for babble noise and ρ = 0.55 for speech-shaped noise).The eTNL scoring method yielded similar results as the aTNL method although requiring only half the time for 65% of the listeners. This time efficiency, along with its reliability and the potential relationship between TNL and hearing aid satisfaction in noisy listening situations suggests that this procedure may be a good clinical tool to evaluate whether specific features on a hearing aid would improve noise tolerance and predict wearer satisfaction with the selected hearing aid in real-life loud noisy situations. A larger sample of hearing aid wearers is needed to further validate these potential uses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.