The development of fluid-structure interaction (FSI) software involves trade-offs between ease of use, generality, performance, and cost. Typically there are large learning curves when using low-level software to model the interaction of an elastic structure immersed in a uniform density fluid. Many existing codes are not publicly available, and the commercial software that exists usually requires expensive licenses and may not be as robust or allow the necessary flexibility that in house codes can provide. We present an open source immersed boundary software package, IB2d, with full implementations in both MATLAB and Python, that is capable of running a vast range of biomechanics models and is accessible to scientists who have experience in high-level programming environments. IB2d contains multiple options for constructing material properties of the fiber structure, as well as the advection-diffusion of a chemical gradient, muscle mechanics models, and artificial forcing to drive boundaries with a preferred motion.
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
The distribution and abundance of plants across the world depends in part on their ability to move, which is commonly characterized by a dispersal kernel. For seeds, the total dispersal kernel (TDK) describes the combined influence of all primary, secondary and higher-order dispersal vectors on the overall dispersal kernel for a plant individual, population, species or community. Understanding the role of each vector within the TDK, and their combined influence on the TDK, is critically important for being able to predict plant responses to a changing biotic or abiotic environment. In addition, fully characterizing the TDK by including all vectors may affect predictions of population spread. Here, we review existing research on the TDK and discuss advances in empirical, conceptual modelling and statistical approaches that will facilitate broader application. The concept is simple, but few examples of well-characterized TDKs exist. We find that significant empirical challenges exist, as many studies do not account for all dispersal vectors (e.g. gravity, higher-order dispersal vectors), inadequately measure or estimate long-distance dispersal resulting from multiple vectors and/or neglect spatial heterogeneity and context dependence. Existing mathematical and conceptual modelling approaches and statistical methods allow fitting individual dispersal kernels and combining them to form a TDK; these will perform best if robust prior information is available. We recommend a modelling cycle to parameterize TDKs, where empirical data inform models, which in turn inform additional data collection. Finally, we recommend that the TDK concept be extended to account for not only where seeds land, but also how that location affects the likelihood of establishing and producing a reproductive adult, i.e. the total effective dispersal kernel.
Opioid addiction has become a global epidemic and a national health crisis in recent years, with the number of opioid overdose fatalities steadily increasing since the 1990s. In contrast to the dynamics of a typical illicit drug or disease epidemic, opioid addiction has its roots in legal, prescription medication -a fact which greatly increases the exposed population and provides additional drug accessibility for addicts. In this paper, we present a mathematical model for prescription drug addiction and treatment with parameters and validation based on data from the opioid epidemic. Key dynamics considered include addiction through prescription, addiction from illicit sources, and treatment. Through mathematical analysis, we show that no addiction-free equilibrium can exist without stringent control over how opioids are administered and prescribed, effectively transforming the dynamics of the opioid epidemic into those found in a purely illicit drug model. Numerical sensitivity analysis suggests that relatively low states of endemic addiction can be obtained by primarily focusing on medical prevention followed by aggressive treatment of remaining cases -even when the probability of relapse from treatment remains high. Further empirical study focused on understanding the
The immersed boundary method (IB) is an elegant way to fully couple the motion of a fluid and deformations of an immersed elastic structure. In that vein, the IB2d software allows for expedited explorations of fluid-structure interaction for beginners and veterans to the field of computational fluid dynamics (CFD). While most open source CFD codes are written in low level programming environments, IB2d was specifically written in highlevel programming environments to make its accessibility extend beyond scientists with vast programming experience. Although introduced previously in [1], many improvements and additions have been made to the software to allow for even more robust models of material properties for the elastic structures, including a data analysis package for both the fluid and immersed structure data, an improved time-stepping scheme for higher accuracy solutions, and functionality for modeling slight fluid density variations as given by the Boussinesq approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.