Background:The neutron β-decay asymmetry parameter A 0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A 0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ ≡ g A /g V , which under assumption of the conserved vector current hypothesis (g V = 1) determines g A . Precise values for g A are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A 0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A 0 .
A cryogenic apparatus is described that enables a new experiment, nEDM@SNS, with a major improvement in sensitivity compared to the existing limit in the search for a neutron Electric Dipole Moment (EDM). This apparatus uses superfluid 4 He to produce a high density of Ultra-Cold Neutrons (UCN) which are contained in a suitably coated pair of measurement cells. The experiment, to be operated at the Spallation Neutron Source at Oak Ridge National Laboratory, uses polarized 3 He from an Atomic Beam Source injected into the superfluid 4 He and transported to the measurement cells where it serves as a co-magnetometer. The superfluid 4 He is also used as an insulating medium allowing significantly higher electric fields, compared to previous experiments, to be maintained across the measurement cells. These features provide an ultimate statistical uncertainty for the EDM of 2 − 3 × 10 −28 e-cm, with anticipated systematic uncertainties below this level.
Critical dressing, the simultaneous dressing of two spin species to the same effective Larmor frequency, is a technique that can, in principle, improve the sensitivity to small frequency shifts. The benefits of spin dressing and thus critical dressing are achieved at the expense of generating a large (relative to the holding field B0,) homogeneous oscillating field. Due to inevitable imperfections of the fields generated, the benefits of spin dressing may be lost from the additional relaxation and noise generated by the dressing field imperfections. In this analysis the subject of relaxation and frequency shifts are approached with simulations and theory. Analytical predictions are made from a new quasi-quantum model that includes gradients in the holding field B0 = ω0/γ and dressing field B1 = ω1/γ where B1 is oscillating at frequency ω. It is found that irreversible DC gradient relaxation can be canceled by an AC spin dressing gradient in the Redfield regime. Furthermore, it is shown that there is no linear in E frequency shift generated by gradients in the dressing field. The results are compared with a Monte Carlo simulation coupled with a 5 th order Runge-Kutta integrator. Comparisons of the two methods are presented as well as a set of optimized parameters that produce stable critical dressing at a range for oscillating frequencies ω, as well as pulsed frequency modulation parameters for maximum sensitivity.
We report an improved measurement of the free neutron lifetime τ n using the UCNτ apparatus at the Los Alamos Neutron Science Center. We count a total of approximately 38 × 10 6 surviving ultracold neutrons (UCNs) after storing in UCNτ's magnetogravitational trap over two data acquisition campaigns in 2017 and 2018. We extract τ n from three blinded, independent analyses by both pairing long and short storage time runs to find a set of replicate τ n measurements and by performing a global likelihood fit to all data while selfconsistently incorporating the β-decay lifetime. Both techniques achieve consistent results and find a value τ n ¼ 877.75 AE 0.28 stat þ 0.22= − 0.16 syst s. With this sensitivity, neutron lifetime experiments now directly address the impact of recent refinements in our understanding of the standard model for neutron decay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.