The polymorphism of the simple amino acid glycine has been known for almost a century. It is also known that in aqueous solutions, at the isoelectric point (pI 5.9), the metastable alpha polymorph crystallizes, while the stable gamma form of glycine only nucleates at high and low pH. Despite the importance of understanding the process by which crystals nucleate, the solution and solid-state chemistry underlying this simple observation have never been explored. In this contribution, we have combined solution chemistry, crystallization, and crystallographic data to investigate the mechanisms by which this effect occurs. It is concluded that solution speciation and the consequent interactions between charged species and developing crystal nuclei determine the structural outcome of the crystallization process.
The crystallization and subsequent polymorphic transformation from the β to the R form of glycine has been studied using optical microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques. The crystal structure and morphology of β glycine have been determined, and the influence of solvent, solubility, and process scale on its solvent-mediated transformation to the R form was quantified. It is concluded that for the low solubility environments used in this study, the rate-determining step in the transformation process is the dissolution rate of the metastable β polymorph.
SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealed the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein-ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.
This paper explores the crystallization of glycine from aqueous solution within a variety of colloidal
systems in which the dimension of the crystallization environment varies from micrometers to nanometers. The
study focuses on the polymorphic outcome of crystallization experiments and the extent to which crystal size can be
controlled. The appearance of the β and γ polymorphic forms is found to be related to the organization and functionality
of the surfactants utilized as well as the supersaturation. Overall, it is noted that while macroemulsions may be
used to generate particulates of controlled size, crystal growth in microemulsion and lamellar phases is not restricted
to the dimensions of the aqueous domains.
Spinal muscular atrophy (SMA), a
rare neuromuscular disorder, is
the leading genetic cause of death in infants and toddlers. SMA is
caused by the deletion or a loss of function mutation of the survival
motor neuron 1 (SMN1) gene. In humans, a second closely related gene
SMN2 exists; however it codes for a less stable SMN protein. In recent
years, significant progress has been made toward disease modifying
treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we
describe the discovery of LMI070/branaplam, a small molecule that
stabilizes the interaction between the spliceosome and SMN2 pre-mRNA.
Branaplam (1) originated from a high-throughput phenotypic
screening hit, pyridazine 2, and evolved via multiparameter
lead optimization. In a severe mouse SMA model, branaplam treatment
increased full-length SMN RNA and protein levels, and extended survival.
Currently, branaplam is in clinical studies for SMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.