We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, non-interacting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T = 0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic non-locality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-interacting limit is significantly broadened by the electronic correlations, but retains signatures of the approach to the edges of the first Brillouin zone as the density increases. Finite-size scaling of simulations on large lattices allows us to extract the interaction dependence of the antiferromagnetic order parameter, exhibiting its evolution from weak-coupling to the strong-coupling Heisenberg limit. Our lattices provide improved resolution of the Green's function in momentum space, allowing a more quantitative comparison with time-of-flight optical lattice experiments.
In this paper, we investigate signatures of topological phase transitions in interacting systems. We show that the key signature is the existence of a topologically protected level crossing, which is robust and sharply defines the topological transition, even in finite-size systems. Spatial symmetries are argued to play a fundamental role in the selection of the boundary conditions to be used to locate topological transitions in finite systems. We discuss the theoretical implications of these results, and utilize exact diagonalization to demonstrate its manifestations in the Haldane-Fermi-Hubbard model. Our findings provide an efficient way to detect topological transitions in experiments and in numerical calculations that cannot access the ground-state wave function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.