Means of applying Krylov subspace techniques for adaptively extracting accurate reducedorder models of large-scale nonlinear dynamical systems is a relatively open problem. There has been much current interest in developing such techniques. We focus on a bi-linearization method, which extends Krylov subspace techniques for linear systems. In this approach, the nonlinear system is first approximated by a bilinear system through Carleman bilinearization. Then a reduced-order bilinear system is constructed in such a way that it matches certain number of multimoments corresponding to the first few kernels of the Volterra-Wiener representation of the bilinear system. It is shown that the two-sided Krylov subspace technique matches significant more number of multimoments than the corresponding one-side technique.
There are numerous applications in physics, statistics and electrical circuit simulation where it is required to bound entries and the trace of the inverse and the determinant of a large sparse matrix. All these computational tasks are related to the central mathematical problem studied in this paper, namely, bounding the bilinear form uXf(A)v for a given matrix A and vectors u and v, wherefis a given smooth function and is defined on the spectrum of A. We will study a practical numerical algorithm for bounding the bilinear form, where the matrix A is only referenced through matrix-vector multiplications. A Monte Carlo method is also presented to efficiently estimate the trace of the inverse and the determinant of a large sparse matrix.
Abstract. We first introduce a second-order Krylov subspace Gn(A, B; u) based on a pair of square matrices A and B and a vector u. The subspace is spanned by a sequence of vectors defined via a second-order linear homogeneous recurrence relation with coefficient matrices A and B and an initial vector u. It generalizes the well-known Krylov subspace Kn(A; v), which is spanned by a sequence of vectors defined via a first-order linear homogeneous recurrence relation with a single coefficient matrix A and an initial vector v. Then we present a second-order Arnoldi (SOAR) procedure for generating an orthonormal basis of Gn(A, B; u). By applying the standard RayleighRitz orthogonal projection technique, we derive an SOAR method for solving a large-scale quadratic eigenvalue problem (QEP). This method is applied to the QEP directly. Hence it preserves essential structures and properties of the QEP. Numerical examples demonstrate that the SOAR method outperforms convergence behaviors of the Krylov subspace-based Arnoldi method applied to the linearized QEP.
A structure-preserving dimension reduction algorithm for large-scale second-order dynamical systems is presented. It is a projection method based on a second-order Krylov subspace. A second-order Arnoldi (SOAR) method is used to generate an orthonormal basis of the projection subspace. The reduced system not only preserves the second-order structure but also has the same order of approximation as the standard Arnoldi-based Krylov subspace method via linearization. The superior numerical properties of the SOAR-based method are demonstrated by examples from structural dynamics and microelectromechanical systems.
Summary.We discuss an inverse-free, highly parallel, spectral divide and conquer algorithm. It can compute either an invariant subspace of a nonsymmetric matrix A, or a pair of left and right deflating subspaces of a regular matrix pencil A − λB . This algorithm is based on earlier ones of Bulgakov, Godunov and Malyshev, but improves on them in several ways. This algorithm only uses easily parallelizable linear algebra building blocks: matrix multiplication and QR decomposition, but not matrix inversion. Similar parallel algorithms for the nonsymmetric eigenproblem use the matrix sign function, which requires matrix inversion and is faster but can be less stable than the new algorithm.
Mathematics Subject Classification (1991): 65F15
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.