We studied bark thickness in the mixed-conifer forest type throughout California. Sampling included eight conifer species and covered latitude and elevation gradients. The thickness of tree bark at 1.37 m correlated with diameter at breast height (DBH) and varied among species. Trees exhibiting more rapid growth had slightly thinner bark for a given DBH. Variability in bark thickness obscured differences between sample locations. Model predictions for 50 cm DBH trees of each species indicated that bark thickness was ranked Calocedrus decurrens > Pinus jeffreyi > Pinus lambertiana > Abies concolor > Pseudotsuga menziesii > Abies magnifica > Pinus monticola > Pinus contorta. We failed to find reasonable agreement between our bark thickness data and existing bark thickness regressions used in models predicting fire-induced mortality in the mixed-conifer forest type in California. The fire effects software systems generally underpredicted bark thickness for most species, which could lead to an overprediction in fire-caused tree mortality in California. A model for conifers in Oregon predicted that bark was 49% thinner in Abies concolor and 37% thicker in Pseudotsuga menziesii than our samples from across California, suggesting that more data are needed to validate and refine bark thickness equations within existing fire effects models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.