Modifications around the dipeptide-mimetic core of a hydroxamic acid based matrix metalloproteinase inhibitor were studied. These variations incorporated a variety of natural, unnatural, and synthetic amino acids in addition to modifications of the P1' and P3' substituents. The results of this study indicate the following structural requirements: (1) Two key hydrogen bonds must be present between the enzyme and potent substrates. (2) Potent inhibitors must possess strong zinc-binding functionalities. (3) The potential importance of the hydrophobic group at position R3 as illustrated by its ability to impart greater relative potency against stromelysin when larger hydrophobic groups are used. (4) Requirements surrounding the nature of the amino acid appear to be more restrictive for stromelysin than for neutrophil collagenase, 72 kDa gelatinase, and 92 kDa gelatinase. These requirements may involve planar fused-ring aryl systems and possibly hydrogen-bonding capabilities.
The retinoid 6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN) and its active analogues induce cell-cycle arrest and programmed cell death (apoptosis) in cancer cells independently of retinoic acid receptor (RAR) interaction. Its analogue, (E)-4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-(3'-acetamidopropyloxy)cinnamic acid (3-A-AHPC) selectively antagonized cell apoptotic events (TR3/nur77/NGFI-B expression and nuclear-to-mitochondrial translocation) but not the proliferative events (cell-cycle arrest and p21(WAF1/CIP1) expression) induced by proapoptotic AHPN and its analogues. The syntheses of 3-A-AHPC and proapoptotic (E)-6-[3'-(1-adamantyl)-4'-hydroxyphenyl]-5-chloronaphthalenecarboxylic acid (5-Cl-AHPN) are described. Computational studies on AHPN, AHPC, and three substituted analogues (5-Cl-AHPN, 3-Cl-AHPC, and 3-A-AHPC) suggested reasons for their diametric effects on RAR activation. Density functional theory studies indicated that the 1-adamantyl (1-Ad) groups of the AHPN and AHPC configurations assumed positions that were nearly planar with the aromatic rings of their polar termini. In contrast, in the configurations of the substituted analogues having chloro and 3-acetamidopropyloxy groups, rather than a hydrogen, ortho to the diaryl bonds, the diaryl bond torsion angles increased so that the 1-Ad groups were oriented out of this plane. Docking and molecular dynamics of AHPN, AHPC, and these substituted analogues in the RARgamma ligand-binding domain illustrated how specific substituents on the AHPN and AHPC scaffolds modulated the positions and dynamics of the 1-Ad groups. As a result, the position of RARgamma helix H12 in forming the coactivator-binding site was impacted in a manner consistent with the experimental effect of each analogue on RARgamma transcriptional activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.