Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.
We experimentally investigate second harmonic generation from strongly coupled localized and propagative phonon polariton modes in arrays of silicon carbide nanopillars. Our results clearly demonstrate the hybrid nature of the system's eigenmodes and distinct manifestation of strong coupling in the linear and nonlinear response. While in linear reflectivity the intensity of the two strongly-coupled branches is essentially symmetric and well explained by their respective localized or propagative components, the second harmonic signal presents a strong asymmetry. Analyzing it in detail, we reveal the importance of interference effects between the nonlinear polarization terms originating in the bulk and in the phonon polariton modes, respectively.
We demonstrate midinfrared second-harmonic generation as a highly sensitive phonon spectroscopy technique that we exemplify using α-quartz (SiO2) as a model system. A midinfrared free-electron laser provides direct access to optical phonon resonances ranging from 350 cm −1 to 1400 cm −1 . While the extremely wide tunability and high peak fields of a free-electron laser promote nonlinear spectroscopic studies-complemented by simultaneous linear reflectivity measurements-azimuthal scans reveal crystallographic symmetry information of the sample. Additionally, temperature-dependent measurements show how damping rates increase, phonon modes shift spectrally and in certain cases disappear completely when approaching Tc = 846 K where quartz undergoes a structural phase transition from trigonal α-quartz to hexagonal β-quartz, demonstrating the technique's potential for studies of phase transitions.
We demonstrate mid-infrared second harmonic generation spectroscopy as a novel type of phonon spectroscopy for α-quartz. The immense tunability of an infrared free-electron laser gives access to optical phonons in the range of 350-1400 cm-1
We report the infrared dielectric properties of α-quartz in the temperature range from 1.5 K to 200 K. Using an infrared free-electron laser, far-infrared reflectivity spectra of a single crystal y-cut were acquired along both principal axes, under two different incidence angles, in S-and P-polarization. These experimental data have been fitted globally for each temperature with a multioscillator model, allowing to extract frequencies and damping rates of the ordinary and extraordinary, transverse and longitudinal optic phonon modes, and hence the temperature-dependent dispersion of the infrared dielectric function. The results are in line with previous high-temperature studies, allowing for a parametrized description of all temperature-dependent phonon parameters and the resulting dielectric function from 1.5 K up to the α-β-phase transition temperature, TC = 846 K. Using these data, we predict remarkably high quality factors for polaritons in α-quartz's hyperbolic spectral region at low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.